ILP 2018 MIT Research and Development Conference

New Methodologies in Materials Research for Accelerated Innovation

Carl V. Thompson, Director, Materials Research Laboratory Stavros Salapatos Professor of Materials Science and Engineering

- The Materials Research Laboratory
- The Nature Materials Research
- New Methods and Methodologies

The Materials Research Laboratory

https://mrl.mit.edu/

- Promotes Interdisciplinary Materials Research
- Provides a Nexus for Internal and External Communication
 - Engages with Industry
- MRL Industry Collegium; Partnering with ILP and MIT.nano

Materials for:

- Tissue engineering
- In vivo drug delivery
- Biomedical devices
- Batteries: metal-ion, flow, metal-air
 - Solar cells
 - Mechanical energy harvesting
 - Thermal energy harvesting
 - Hydrolysis
 - Fuel cells
 - Quantum computing
 - Computation
 - Sensing
 - Water treatment
 - Displays
 - Coatings
 - Catalysts
 - Structures
 - Transportation
 - and more!

Over 150 faculty and their groups carry out materials research at MIT!

Materials Research

2D Materials Research

S

Patents issued to MIT Faculty by Building

(between 2005 and 2011)

MRL faculty have founded dozens of companies:

The Power of Proximity

Beyond Kendall Square:

- Linking through ILP and Labs/Centers like MRL
- Embedding staff at MIT through Labs/Centers like MRL
- Collaborate in research

New Methods and Methodologies

Advances in imaging-based materials research:

Integrated in-situ studies of processing, structure, and properties

• Unprecedented nano/pico-scale structural and chemical analysis

Materials and process selection informed by system level assessment of

Integration of ab-initio simulations and machine learning in all aspects of materials research

In situ Electron Microscopy for Materials and Process Design

Frances Ross, Department of Materials Science and Engineering (recently from IBM)

Heavily modified TEM for

- Ultra high vacuum/high resolution imaging
- Real-time imaging of gas phase and liquid phase materials synthesis

- Videos reveal atomic-level mechanisms of self assembly and growth of nanomaterials.
- This provides insights into process and materials design.

TEM for in situ studies to move from IBM to MRL. Next generation microscope to be placed in MIT.nano

In-situ Imaging of Formation and Shape Evolution of Quantum Dots

Frances Ross, Department of Materials Science and Engineering (recently IBM)

heated sample with central thin area for imaging

Introduce GeSi₂ to grow Ge quantum dots on heated Si substrate

frame-by-frame analysis

- Coarsening follows nucleation and growth
- Size dependent transition in facetted shape

In-situ Imaging of Formation and Shape Evolution of Quantum Dots

Frances Ross, Department of Materials Science and Engineering (recently IBM)

heated sample with central thin area for imaging

Introduce GeSi₂ to grow Ge quantum dots on heated Si substrate

Control of nucleation and growth

In-situ Imaging of Growth of Nanowires

Frances Ross, Department of Materials Science and Engineering (recently IBM)

Nanowire growth through SiH₂ decomposition catalyzed by a liquid Au particle

- Wire grows one atomic layer at a time
- Surface roughness due to nano-facets

Observing the details of this self-assembly process allows:

- Visualization of the atomic pathways
- Development of models for growth
- Generation strategies for precise control
- Identification and anticipation of new growth modes

Growth of a complex

structure through

catalyst design

Fundamentals of phase transformations

Control of growth direction using an electric field

In-situ Imaging Liquid Phase Processes

Frances Ross, Department of Materials Science and Engineering (recently IBM)

First to Design, Build and Use Liquid Cells for in situ TEM

In-situ observation of Cu electrodepostion

In situ observation of the onset of dendritic growth during electrodeposition

In situ observation of intragranular pitting during corrosion of Al

Advancing the State-of-the-Art Transmission Electron Microscopy: Pico-scale Imaging

Jim LeBeau, Department of Materials Science and Engineering, Spring 2019

- Key to the materials feedback loop: synthesize, characterize, properties
- Requires extreme environmental stability (vibrations, fields, temperature)
- Picometer deflections of inelastically scattered electrons provide sub-atomic resolution. Electron energy loss spectroscopy provides atom identity.

Advancing the State-of-the-Art Transmission Electron Microscopy: Pico-scale Imaging

collect images in 4 or 8 locations

Advancing the State-of-the-Art Electron Microscopy: Pico-scale Imaging

Atomic/chemical resolution at surfaces: Surface Reconstruction

quantum mechanical simulations play a key role

In situ Fields – From Macroscale to Atomic Scale

Machine Learning For Atomic Resolution Electron Microscopy

e.g. Atomic Imaging of Nanoparticles

Convolutional Neural Network for Autonomous Diffraction Analysis

Find thickness, tilt and rotation from a single Position Averaged Convergent Beam Electron Diffraction pattern

Train neural network using quantum mechanical simulation of images

Next steps: Instrument feedback control, robust ROI tracking, autofocus, auto acquire

The Quality of the Imaging Space in MIT.nano and Embedding in the MIT Environment Will Support a New Wave of Innovation in Imaging-Based Materials Research

New Methods and Methodologies

Advances in imaging-based materials research: Integrated in-situ studies of processing, structure, and properties

• Unprecedented nano/pico-scale structural and chemical analysis

Materials and process selection informed by system level assessment of

- Performance
- Cost over the full life-cycle of the material
- Abundance
- Environmental and Societal Impact

Integration of ab-initio simulations and machine learning in all aspects of materials research

Determining What Materials and Systems to Target for Research

Renewable Energy Sources are Intermittent

Energy Storage to Match Demand and Reduce Cost

pumped hydro storage

compressed air storage

What is Required for Batteries to Lower Costs

It depends on

- energy source
- location
- type of battery

When do Batteries Reduce Costs for Renewable Energy Sources

Jessika Trancik: Institute for Data, Systems, and Society

CAES: compressed air energy storage; PHS: pumped hydro storage; lead–acid, Ni/Cd, Na/S, Li-ion: batteries; Zn/Br, V-redox: flow batteries.

lines: threshold storage cost intensities at which it becomes valuable to incorporate storage

Output: Cost targets

Techno-Economic Analysis to Identify Key Challenges and Performance Needs in Electrochemical Energy Storage: Redox Flow Batteries

Fikile Brushett: Chemical Engineering

Speaker today Connecting system-level performance and cost goals to materials-level property requirements to guide the development of the new chemistries and reactor designs

Techno-Economic Analysis to Identify Key Challenges and Performance Needs in Electrochemical Energy Storage: Redox Flow Batteries

Fikile Brushett, Chemical Engineering

Connecting system-level performance and cost goals to materials-level property requirements to guide the development of the new chemistries and reactor designs

New Methods and Methodologies

Advances in imaging-based materials research: Integrated in-situ studies of processing, structure, and properties

• Unprecedented nano/pico-scale structural and chemical analysis

Materials and process selection informed by system level assessment of

- Performance
- Cost over the full life-cycle of the material
- Abundance
- Environmental and Societal Impact

Integration of ab-initio simulations and machine learning in all aspects of materials research

Chalcogenide Active Materials for Photonics and Photovoltaics

Rafael Jaramillo, Department of Materials Science and Engineering

Speaker today

Machine-learning-enhanced Chip-scale Spectrometers for Chemical Sensing

<u>Juejen (JJ) Hu</u>, Department of Materials Science and Engineering Brando Miranda, Center for Brains Minds and Machines, MIT

Vision for Computer Aided, Data-driven Materials Discovery

Move from this:

- 1. Identify material to make
- 2. Read literature/do what you did last time
- 3. Trial-and-error synthesis

...to this:

- 1. A computer helps you decide what to make
- 2. And suggests how to make it
- 3. Synthesize material

The Materials Genome/Project: Modern data-driven and first-principles materials design accelerates pace for knowing *what* to make...

Data Mining of Compilations of Known Structures

First Principles Calculations - Thermodynamic Stability - Properties

Elsa Olivetti with attribution to G. Ceder

Virtual Screening for Inorganic Materials Synthesis Parameters Using Deep Learning Methods

Elsa Olivetti, Department of Materials Science and Engineering

Example: Suggesting Synthesis Conditions for a Specific Morphology of Titania (TiO₂)

Elsa Olivettti, Department of Materials Science and Engineering

Experimentally-accessible (and reported) variables to facilitate practical synthesis route planning.

Edward Kim et al., Chemistry of Materials 2017

Exploratory: Rare Phase in Common Material

Elsa Olivettti, Department of Materials Science and Engineering Stefanie Jegelka, Computer Science and Artificial Intelligence Laboratory, EECS

Clustering of latent space shows driving conditions for polymorph of TiO₂ for photocatalysis

Example: Suggesting Synthesis Conditions for Stabilizing Desired Materials Structures

Elsa Olivettti, Department of Materials Science and Engineering Stefanie Jegelka, Computer Science and Artificial Intelligence Laboratory, EECS

E. Kim et al., npj Computational Materials 2017

High-Throughput Virtual Organic Molecule Screening

Rafael Gomez-Bombarelli, Department of Materials Science and Engineering

Toolset – Blurring the Lines Between Simulation and Learning

Rafael Gomez-Bombarelli, Department of Materials Science and Engineering

High-throughput virtual screening

Method development / representation learning

Automatic chemical design

Data-driven discovery and optimization.

New Methods and Methodologies

Advances in imaging-based materials research:

Integrated in-situ studies of processing, structure, and properties

• Unprecedented nano/pico-scale structural and chemical analysis

Materials and process selection informed by system level assessment of

- Performance
- Cost over the full life-cycle of the material
- Abundance
- Environmental and Societal Impact

Integration of ab-initio simulations and machine learning in all aspects of materials research

The Materials Research Laboratory

https://mrl.mit.edu/

- Promotes Interdisciplinary Materials Research
- Provides a Nexus for Internal and External Communication
 - Engages with Industry

MRL Industry Collegium; Partnering with ILP and MIT.nano

