What If Your Smart Phone Didn't Need the Cloud?

Vivienne Sze

l'liī

ms technology laboratories

- What is Deep Learning?
- How is Deep Learning being used?
- Why is Edge Computing important?
- How can we enable Deep Learning at the Edge?

Al and Machine Learning

Artificial Intelligence

Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Brain-Inspired Machine Learning

5 Neural Networks

Neural Networks: Weighted Sum 6

Image Source: Stanford

stems technology laboratories

Many Weighted Sums

Image Source: Stanford

Deep Learning

What is Deep Learning?

Image Source: [Lee et al., Comm. ACM 2011]

Why is Deep Learning Hot Now?

ImageNet Challenge

IM A GENET

Image Classification Task:

1.2M training images • 1000 object categories

Object Detection Task:

456k training images • 200 object categories

ImageNet: Image Classification Task

[Russakovsky et al., IJCV 2015]

GPU Usage for ImageNet Challenge

Deep Learning on Images

- Image Classification
- Object Localization
- Object Detection

- Image Segmentation
- Action Recognition
- Image Generation

Human or Superhuman Accuracy Level

Face recognition

– Deep learning accuracy (97.25%) vs. Human accuracy (97.53%)

- Fine grained category recognition (e.g. dogs, monkeys, snakes, birds)
 - Deep learning errors: 7 vs. Human errors: 28

120 species of dogs

[O. Russakovsky et al., IJCV 2015]

Deep Learning for Speech

- Speech Recognition
- Natural Language Processing
- Speech Translation
- Audio Generation

Deep Learning on Games

Google DeepMind AlphaGo

Go is exponentially more complex than chess (10¹⁷⁰ legal positions)

Medical Applications of Deep Learning

Brain Cancer Detection

Image Source: [Jermyn et al., JBO 2016] SEARCH LABORATORY FELECTRONICS AT MIT

Deep Learning for Self-driving Cars

Other Emerging Applications

- Medical (Cancer Detection, Pre-Natal)
- Finance (Trading, Energy Forecasting, Risk)
- Infrastructure (Structure Safety and Traffic)
- Weather Forecasting and Event Detection

This talk will focus on image classification

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/

\$500B Market over 10 Years!

Image Source: Tractica

ESEARCH LABORATORY F ELECTRONICS AT MIT

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

> – Greg Diamos, Senior Researcher, SVAIL, Baidu

Processing at "Edge" instead of the "Cloud"

Privacy

Processing at "Edge" instead of the "Cloud" 24

Privacy

Processing at "Edge" instead of the "Cloud"

ystems technology laboratories

26 Video is the Biggest Big Data

Over 70% of today's Internet traffic is video Over 300 hours of video uploaded to YouTube <u>every minute</u> Over 500 million hours of video surveillance collected <u>every day</u>

Need energy-efficient pixel processing!

Typical Constraints on Video Coding

- Area cost
 - Memory Size 100-500kB
- Power budget
 - < 1W for smartphones</p>
- Throughput
 - Real-time 30 fps
- Energy
 - ~1nJ/pixel

MIT Object Detection Chip [<u>VLSI 2016</u>]

Why is Vision Difficult?

Cat

Why is Vision Difficult?

Eyeriss: Energy-Efficient Hardware for DCNNs

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper] / ISCA 2016 [paper]

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

High-Dimensional CNN Convolution

Input Image (Feature Map)

³⁵ High-Dimensional CNN Convolution

Input Image (Feature Map)

Element-wise Multiplication

In High-Dimensional CNN Convolution

In High-Dimensional CNN Convolution

Sliding Window Processing

Bigh-Dimensional CNN Convolution

Many Input Channels (C)

In High-Dimensional CNN Convolution

High-Dimensional CNN Convolution 40

Phir

ns technology laboratories

Large Sizes with Varying Shapes

AlexNet¹ Convolutional Layer Configurations

Layer	Filter Size (R)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1

34k Params 105M MACs Layer 2

307k Params

224M MACs

885k Params 150M MACs

- Operations exhibit high parallelism
 - → high throughput possible

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

* multiply-and-accumulate

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NIPS 2012] has 724M MACs
 → 2896M DRAM accesses required

- Operations exhibit high parallelism
 → high throughput possible
- Input data reuse opportunities (up to 500x)

→ exploit **low-cost memory**

Images

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Advantages of Spatial Architecture

How to Map the Dataflow?

Goal: Increase reuse of input data (weights and pixels) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)

49

Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016

Maximize data reuse and accumulation at RF

Data Movement is Expensive

Processing Engine

Data Movement Energy Cost

Maximize data reuse at lower levels of hierarchy

⁵¹ Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

53 No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Row Stationary Dataflow

microsystems technology laboratories massachusetts institute of technology

CNN Convolution – The Full Picture

to exploit other forms of reuse and local accumulation

55

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Dataflow Comparison: CONV Layers

58

Energy-Efficient Accelerator

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016

Exploit data statistics

Eyeriss Deep CNN Accelerator

Data Compression Saves DRAM BW

Apply Non-Linearity (ReLU) on Filtered Image Data

Zero Data Processing Gating

- Skip PE local memory access
- Skip MAC computation
- Save PE processing power by 45%

Eyeriss Chip Spec & Measurement Results

Technology TSMC 65nm LP 1P9M			
On-Chip Buffer	108 KB	4000 μm	vşşu
# of PEs	168		
Scratch Pad / PE	0.5 KB	Global Spatial A	rray
Core Frequency	100 – 250 MHz	Buffer (168 PE	s)
Peak Performance	33.6 – 84.0 GOPS		
Word Bit-width	16-bit Fixed-Point		
Natively Supported CNN Shapes	Filter Width: 1 – 32 Filter Height: 1 – 12 Num. Filters: 1 – 1024 Num. Channels: 1 – 1024 Horz. Stride: 1–12 Vert. Stride: 1 – 2 4		

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

4000 µm

Comparison with GPU

	This Work	NVIDIA TK1 (Jetson Kit)
Technology	65nm	28nm
Clock Rate	200MHz	852MHz
# Multipliers	168	192
On-Chip Storage	Buffer: 108KB Spad: 75.3KB	Shared Mem: 64KB Reg File: 256KB
Word Bit-Width	16b Fixed	32b Float
Throughput ¹	34.7 fps	68 fps
Measured Power	278 mW	Idle/Active ² : 3.7W/10.2W
DRAM Bandwidth	127 MB/s	1120 MB/s ³

- 1. AlexNet Convolutional Layers Only
- 2. Board Power
- 3. Modeled from [Tan, SC11]

Demo of Image Classification on Eyeriss

https://vimeo.com/154012013

Integrated with BVLC Caffe DL Framework

Summary of Eyeriss Deep CNN

- Eyeriss: a reconfigurable accelerator for state-of-the-art deep CNNs at below 300mW
- Energy-efficient dataflow to reduce data movement
- Exploit data statistics for high energy efficiency
- Integrated with the Caffe DL framework and demonstrated an image classification system

More info about Eyeriss and Tutorial on DNN Architectures at http://eyeriss.mit.edu

65

Features: Energy vs. Accuracy

66

67

Designing Energy-Efficient CNNs using Energy-Aware Pruning

Tien-Ju Yang, Yu-Hsin Chen, Vivienne Sze, CVPR 2017

I Energy-Evaluation Methodology

68

Hardware Energy Costs of each MAC and Memory Access

T MIT

Illi Energy estimation tool available at <u>http://eyeriss.mit.edu</u>

Energy-Aware Pruning

l'liiT

69

[Yang et al., CVPR 2017]

⁷⁰ Enable real-time navigation on nanoDrone

Big battery

Mobile GPU

Enable energy-efficient navigation for **Search and Rescue**

IIIii In collaboration with Sertac Karaman (AeroAstro)

71 Acknowledgements

Research conducted in the **MIT Energy-Efficient Multimedia Systems Group** would not be possible without the support of the following organizations:

More info about Eyeriss and Tutorial on DNN Architectures at http://eyeriss.mit.edu

More info about research in the Energy-Efficient Multimedia Systems Group @ MIT

http://www.rle.mit.edu/eems

For updates

Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

