Energy-Efficient Hardware for Embedded Vision and Deep Convolutional Neural Networks

Vivienne Sze

l'liī

Video is the Biggest Big Data

Over 70% of today's Internet traffic is video Over 300 hours of video uploaded to YouTube <u>every minute</u> Over 500 million hours of video surveillance collected <u>every day</u>

Need energy-efficient pixel processing!

Energy-Efficient Multimedia Systems Group

Goal: Increase coding efficiency, speed and energy-efficiency

Energy-Efficient Computer Vision & Deep Learning (Understand Pixels)

Goal: Make computer vision as ubiquitous as video coding

Features for Object Detection/Classification

- Hand-crafted features
 - Histogram of Oriented Gradients (HOG)
 - Deformable Parts Model (DPM)
- Trained features (using machine learning)
 - Deep Convolutional Neural Nets (DCNN)

HOG Rigid Template based on edges

[Dalal, CVPR 2005] *Cited by 14500*

DPM Flexible Template based on edges

[Felzenszwalb, PAMI 2010]

Cited by 4063

DCNN High level Abstraction

[Krizhevsky, NIPS 2012] Cited by 4843

Typical Constraints on Video Coding

- Area cost
 - Memory Size 100-500kB
- Power budget
 - < 1W for smartphones</p>
- Throughput
 - Real-time 30 fps
- Energy
 - ~1nJ/pixel

MIT Object Detection Chip [VLSI 2016] [paper]

Eyeriss: Energy-Efficient Hardware for DCNNs

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper] / ISCA 2016 [paper]

Increased Accuracy with Deep Learning

Deep Learning requires significantly more computation than previous approaches

Human or Superhuman Accuracy Level

Face recognition

– Deep learning accuracy (97.25%) vs. Human accuracy (97.53%)

- Fine grained category recognition (e.g. dogs, monkeys, snakes, birds)
 - Deep learning errors: 7 vs. Human errors: 28

120 species of dogs

[O. Russakovsky et al., IJCV 2015]

AlphaGo using Deep Learning

Go is exponentially more complex than chess (10¹⁷⁰ legal positions)

Google's AlphaGo, a computer algorithm, beat Go world champion Lee Sedol 4 to 1

9

Deep Convolutional Neural Networks

Low-level

Features

High-level

Features

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

Input Image (Feature Map)

Input Image (Feature Map)

Element-wise Multiplication

Sliding Window Processing

Many Input Channels (C)

Image batch size: 1 – 256 (N)

l'liī

OF ELECTRONICS AT MIT

Large Sizes with Varying Shapes

AlexNet¹ Convolutional Layer Configurations

Layer	Filter Size (R)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1

34k Params 105M MACs Layer 2

307k Params 224M MACs

885k Params 150M MACs

Properties We Can Leverage

- Operations exhibit high parallelism
 - → high throughput possible

²² Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

* multiply-and-accumulate

²³ Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NIPS 2012] has 724M MACs
 → 2896M DRAM accesses required

Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Input data reuse opportunities (up to 500x)

→ exploit **low-cost memory**

Images

²⁵ Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Advantages of Spatial Architecture

27 How to Map the Dataflow?

Goal: Increase reuse of input data (weights and pixels) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)

28

Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016 [paper]

Maximize data reuse and accumulation at RF

Data Movement is Expensive

Processing Engine

Data Movement Energy Cost

Maximize data reuse at lower levels of hierarchy

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

32 No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Row Stationary: Energy-efficient Dataflow

- Maximize row convolutional reuse in RF
 - Keep a filter row and image sliding window in RF
- Maximize row psum accumulation in RF

43 Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally

44 Convolutional Reuse Maximized

Image rows are reused across PEs diagonally

Maximize 2D Accumulation in PE Array

Partial sums accumulate across PEs vertically

46 CNN Convolution – The Full Picture

to exploit other forms of reuse and local accumulation

Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

Row Stationary

Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

Row Stationary

Evaluation Setup

- Same Total Area
- AlexNet
- 256 PEs
- Batch size = 16

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Dataflow Comparison: CONV Layers

Energy-Efficient Accelerator

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper]

Exploit data statistics

Exercise Deep CNN Accelerator

Data Compression Saves DRAM BW

Apply Non-Linearity (ReLU) on Filtered Image Data

Zero Data Processing Gating

- Skip PE local memory access
- Skip MAC computation
- Save PE processing power by 45%

⁵⁵ Chip Spec & Measurement Results¹

Technology TSMC 65nm LP 1P9M		4000 um		
On-Chip Buffer	108 KB			4000 μm
# of PEs	168		3'3'3'3'3'3'3'3'3'3 3	
Scratch Pad / PE	0.5 KB	Glo	bal	Spatial Array
Core Frequency	re Frequency 100 – 250 MHz		ifer	(168 PEs)
Peak Performance 33.6 – 84.0 GOPS				
Word Bit-width	16-bit Fixed-Point			
Natively Supported CNN ShapesFilter Width: 1 – 32 Filter Height: 1 – 12 Num. Filters: 1 – 102 Num. Channels: 1 – Horz. Stride: 1–12 Vort. Stride: 1–2				

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

4000 µm

56 Comparison with GPU

	This Work	NVIDIA TK1 (Jetson Kit)	
Technology	65nm	28nm	
Clock Rate	200MHz	852MHz	
# Multipliers	168	192	
On-Chip Storage	Buffer: 108KB Spad: 75.3KB	Shared Mem: 64KB Reg File: 256KB	
Word Bit-Width	16b Fixed	32b Float	
Throughput ¹	34.7 fps	68 fps	
Measured Power	278 mW	Idle/Active ² : 3.7W/10.2W	
DRAM Bandwidth	127 MB/s	1120 MB/s ³	

- 1. AlexNet Convolutional Layers Only
- 2. Board Power
- 3. Modeled from [Tan, SC11]

Demo of Image Classification on Eyeriss

https://vimeo.com/154012013

Integrated with BVLC Caffe DL Framework

Summary of Eyeriss Deep CNN

- Eyeriss: a reconfigurable accelerator for state-of-the-art deep CNNs at below 300mW
- Energy-efficient dataflow to reduce data movement
- Exploit data statistics for high energy efficiency
- Integrated with the Caffe DL framework and demonstrated an image classification system

58

Features: Energy vs. Accuracy

59

Acknowledgements

This work is funded by the DARPA YFA grant, MIT Center for Integrated Circuits & Systems, and a gift from Intel.

More info about **Eyeriss** and **Tutorial on DNN Architectures** at

http://eyeriss.mit.edu

More info about research in the Energy-Efficient Multimedia Systems Group @ MIT

http://www.rle.mit.edu/eems

Follow @eems_mit

for updates

