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Oxidation State of Carbon  Energy Content
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Reversing Combustion!
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Reductive methods require energy input
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Reductive methods require energy input
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Energy input must have zero carbon emissions

Chemicals

Materials

Fuels



7

Electrical energy input can be direct or indirect (H2)

Indirect: Electrolytic H2 then CO2

Inorganic HT

Catalysis

Biological

Catalysis
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H2 + CO2 processes are mature but can be improved  

Efficiency capped by 

efficiency of water electrolysis

Fischer-Tropsch - Large 

product distribution

Processes are efficient, but 

require precise CO/H2 ratio

Methods for selective single-step CO2

hydrogenation to C2+ liquid fuels needed
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H2 + CO2 processing by engineered microbes

Torella, Gagliardi, Chen, Bediako, Colon, 

Way, Silver, Nocera PNAS 2015, 112, 2337

Efficiency capped by efficiency of 

water electrolysis

Energy lost to sustain microbial 

life/reproduce

Certain strains very sensitive to 

impurities (e.g. H2O2)
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Electrical energy input can be direct or indirect (H2)

Indirect: Electrolytic H2 then CO2 Direct: CO2 electrolysis 

Inorganic HT

Catalysis

Biological

Catalysis
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Selective catalysis key for direct electrolysis

many reactions at similar potentials

Mechanisms of kinetic bifurcation 

poorly understood
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Group 11 metals most active for CDR

HCOO−

CO

C2H4

CH4

Hori, Mod. Aspects of Electrochem. 2008.

phenomenology  rational design?
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CO adsorption key to prevailing mechanistic model

Hori, Kikuchi, Suzuki, Chem. Lett., 1985 and 1986; Kortlever, Shen, Schouten, Calle-

Vallejo, Koper, J. Phys. Chem. Lett., 2015; Hori, Modern Aspects of Electrochem., 2008

H2

evolution?

electrolyte?

competition?
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Part 1: Understanding electron-proton coupling

Wuttig, Yaguchi, Motobayashi, Osawa, YS, PNAS, 2016, E4585

Wuttig, Yoon, Ryu, YS JACS 2017, 139, 17109
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CO2 reduction rate independent of pH, buffer, CO

C

O

pH = 6.8 pH = 8

0th order in HCO3
− kH/kD = 1 0th order in CO

CO2 + e−
C

OO
RLS
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H2 evolution proceeds via obligate CPET

H
H+ + e−

k1

Nernstian pH dependenceHER Tafel Plots

borate/formate 

buffer

CO2 /HCO3
−
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Porous metals synthesized in an opal template

Assemble Opal Electrodeposit Remove Template

I

Electrodeposition
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Mesostructuring induces selectivity on Ag too 

Yoon, Hall, YS, ACHIE, 

2016, 55, 15282

H2 rate inhibited CO rate promoted

Ag inverse opals

Improved selectivity for CO

E = −0.8 V E = −0.8 V
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Part 1: CO2 activation insensitive to proton donor

Wuttig, Yaguchi, Motobayashi, Osawa, YS, PNAS, 2016, E4585

Wuttig, Yoon, Ryu, YS JACS 2017, 139, 17109 

Hall, Yoon, Wuttig, YS, JACS, 2015, 137, 14834; Yoon, Hall, YS, ACHIE, 2016, 55, 15282
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Part 2: Understanding CO reduction selectivity
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Methane kinetics indicate LH mechanism
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CO isotherm saturated for ethylene

Schreier, Yoon, Jackson, Surendranath, 

ACHIE, 2018, DOI: 10.1002/anie.201806051
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Conclusions – Many opportunities but no free lunch

In principle, CO2 can be a resource, meeting diverse 
needs in chemicals, materials, fuels:

CO2 valorization is context dependent:

- Energy cost

- Mechanistic understanding will drive new catalysts for 
selective CO2 valorization

4+ 4−
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