Using Renewable Electricity to Valorize Carbon Dioxide

Oxidation State of Carbon → Energy Content

Reversing Combustion!

Reductive methods require energy input

Reductive methods require energy input

Energy input *must* have zero carbon emissions

Electrical energy input can be direct or indirect (H₂)

H₂ + CO₂ processes are mature but can be improved

H₂ + CO₂ processing by engineered microbes

Torella, Gagliardi, Chen, Bediako, Colon, Way, Silver, Nocera *PNAS* **2015**, *112*, 2337

Electrochaea

Efficiency capped by efficiency of water electrolysis

Energy lost to sustain microbial life/reproduce

Certain strains very sensitive to impurities (e.g. H₂O₂)

Electrical energy input can be direct or indirect (H₂)

Selective catalysis key for direct electrolysis

Group 11 metals most active for CDR

hydrogen																	200	belium
	$henomenology \rightarrow rational design?$													2				
1 0079																пе 40026		
ithium 3	beryllium 4	1											boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
L.	Be												Ř	Ċ	Ň	Ó	Ē	Ne
6.941	9.0122									~			10.811	12.011	14.007	15 999	18.998	20,180
sodium	magnesium	$C_{2}H_{4}$										aluminium	slicon	phosphorus	sulfur	chlorine	argon	
11	12										21.4		13	14	15	16	17	18
Na	Mg									C	H_4	CO	AI	SI	P	S	CI	Ar
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	_26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.966	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.90
37	38		39	21rconium 40	41	molybdenum 42	43	rutnenium 44	45	palladium 46	47	cadmium 48	49	50	antimony 51	52	53	xenon 54
Ph	Sr		V	7r	Nh	Mo	To	Du	Ph	Dd	Aa	Cd	In	Sn	Sh	To		Yo
ND	SI		00.000	~ 1		INIO	10	NU		FU	Ay	Cu	111.02	SII	30	10	100.00	Ve
caesium	barium	Same and	lutetium	91.224 hafnium	tantalum	95.94 lungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	118.71 lead	bismulh	polonium	astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	×	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Pol	At	Rn
132.91	137.33	0.64700	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	400.07	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 97	radium 99	80.102	lawrencium 103	rutherfordium	dubnium	seaborgium 106	bohrium 107	hassium 108	meitnerium 100	ununnilium 110	unununium 111	ununblum 112		ununquadium 114		~~~		
	De	VV		De	DL	Ca	DL		5.44	11		Link		11	H(JUC)-	
Fr	Ra	$\star \star$	Lr	R		Sg	BU	HS	IVIT	Jun	ouu	auu		ouq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	269	[268]	[271]	[272]	[277]		[289]	1			
										_	_				_			
*Lanthanide series 57 58 59 60 61 62 63 64 65 66									dysprosium 66	holmium 67	erbium 68	69	ytlerbium 70	52				
Lanti	namue	series	12	Co	Dr	Md	Dm	Sm	En	Gd	Th	Dv	Ho	Er	Tm	Vh		
			La	Ce		NU		SIII	Ľu	Gu		Dy	no		1111	I D		
			actinium	140.12 Ihorium	protactinium	144.24 uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium		

* * Actinide series

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium 89	lhorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkellum 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Hori, Mod. Aspects of Electrochem. 2008.

CO adsorption key to prevailing mechanistic model

Hori, Kikuchi, Suzuki, *Chem. Lett.*, **1985 and 1986;** Kortlever, Shen, Schouten, Calle-Vallejo, Koper, *J. Phys. Chem. Lett.*, **2015;** Hori, *Modern Aspects of Electrochem.*, **2008**

Part 1: Understanding electron-proton coupling

Wuttig, Yaguchi, Motobayashi, Osawa, YS, *PNAS*, **2016**, E4585 Wuttig, Yoon, Ryu, YS *JACS* **2017**, *139*, 17109

CO₂ reduction rate independent of pH, buffer, CO

H₂ evolution proceeds via obligate CPET

Porous metals synthesized in an opal template

Electrodeposition

Mesostructuring induces selectivity on Ag too

Part 1: CO₂ activation insensitive to proton donor

Wuttig, Yaguchi, Motobayashi, Osawa, YS, *PNAS*, **2016**, E4585 Wuttig, Yoon, Ryu, YS *JACS* **2017**, *139*, 17109 Hall, Yoon, Wuttig, YS, *JACS*, **2015**, *137*, 14834; Yoon, Hall, YS, *ACHIE*, **2016**, 55, 15282

Part 2: Understanding CO reduction selectivity

Methane kinetics indicate LH mechanism

21

CO isotherm saturated for ethylene

22

Conclusions – Many opportunities but no free lunch

In principle, CO_2 can be a resource, meeting diverse needs in chemicals, materials, fuels:

 CO_2 valorization is context dependent:

- Energy cost 4+
- Mechanistic understanding will drive new catalysts for selective CO₂ valorization

Acknowledgements

MIT International Science & Technology Initiatives

Osawa Group

24