Simultaneous optimization of environmental and technical performance in materials and process design

Desiree Plata, PhD Gilbert W. Winslow Career Development Assistant Professor Civil and Environmental Engineering Massachusetts Institute of Technology

> November 13, 2019 2019 MIT Research and Development Conference *Human and Technology Collaboration*

Few chemicals are produced, used, and disposed of without release to the environment

Status quo: Shortened product lifetimes & damage

A modified approach

Disrupting highly complex manufacturing and waste management systems

NANOTECHNOLOGY

Large-scale CNT manufacture

3-10% C conversion efficiency

Healy et al. Industrial Ecology 2008

Energy demands of most advanced processes are high...

Gutowski et al. Environ. Sci. Technol. 2009

...but reasonable considering small incorporated quantities

CNT payback time: 1 kg CNTs device⁻¹~ 2 yrs

Zhai et al. Applied Energy 2016

Peng et al. Renewable & Sustainable Energy Reviews 2013

Nanotube synthesis among the most inefficient reactions of all time

Industry sector	Annual production (t)	E-factor (waste-to- product ratio)	Waste produced (t)	# of steps	Years of development	
Oil refining	10 ⁶ - 10 ⁸	ca. 0.1	10 ⁵ - 10 ⁷	separations	100+	
Bulk chemicals 2	Quick & dirty: ^{Is} 2,200 ton/yr CNT production (DeVolder et al. 2013)					
Fine chemicals	7 k	kton/yr - 0.2	22 Gton/yr	?!	4 — 7	
Pharma- ceuticals	10 - 10 ³	25 — 100+	2.5x10 ² – 10 ⁵	6+	3 — 5	
CNTs	~2.2 x 10 ³	~10-10 ⁵	2.2x10 ³ — 2.2x10 ⁸	1-3	~10-25	

R. A. Sheldon, Chem. Ind. (London), 1992, 903–906. DeVolder et al. Science 2013; Eckelman et al. 2008; Anastas

Emissions are just reaction products

Plata et al. Environ. Sci. and Tech. 2009 Plata et al. ACS Nano 2010

Mike Giannetto

methyl acetylene

vinyl acetylene

Mike Giannetto

E(U)

k SE(U)

k SE(U)

Molecular feature diagnostics via x-ray scattering

Eric Meshot (Lawrence Livermore National Laboratory)

Faber et al. JPCC 2014

Alignment and inter tube spacing are distinct: Structures intact during incorporation!

Mike Giannetto, Adam Watson, Eric Meshot, Eric Johnson, Edgar Dimitrov, Desiree Plata, Unpublished

Mike Giannetto, Eric Johnson, Desiree Plata, Unpublished

Shi, Plata et al. Green Chemistry, 2017

The importance of alkynes born out in the literature

Computer-assisted process optimization

Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning

Edward Kim, 'Kevin Huang,' Adam Saunders, Andrew McCallum, Gerbrand Ceder," and Elsa Olivetti

Incorporating environmental metrics into traditional materials selection schema

Simultaneous optimization via Ashby material selection diagrams: Navigating the material space

Falinski, Plata et al. Nature Nanotechnology, 2018

HORIZONTAL DRILLING WITH HYDRAULIC FRACTURING (HDHF)

hydraulic fracturing well pad

Natural gas: A vast domestic resource

The Eternal Flame, Cook Forest, PA

A remarkable and evolving chemistry

Disclosed components in fracturing fluid

Flowback water: A rich and diverse chemistry (no two wells alike)!

Hoelzer, Sumner, Plata et al. EST 2016

Are such transformations possible in situ?

Sumner and Plata, Environ. Sci.: Processes & Impacts (ESPI), 2018

High temperature (25-95°C)

Several halogenation reactions occur

"3-MCPD" (3-monochloro propane diol) formed; expected chemistry

Unexpected halide reactivity

Halomethanes

Persulfate "breaker"

Sumner and Plata, EST, 2018

*or other oxidized, reactive species (e.g., BrCl, BrOCl, Br_2O , I_3^-)

Can we use reaction criteria to predict chemical formation?

- Avoid it (operators)
- Test for it (municipality)

and...

• Treat it (wastewater or process engineer)

670,000 Number of hydraulic fracturing wells in the US today

umber of flowback same

Number of flowback samples analyzed for chemical constituents

Temperature and pressure (depth); brine composition known with relatively high geospatial specificity

Unify geospatial databases for prediction tools

Disclosure reports

Lat.	Long.	Ingredient	Mass (% w/w		
XX	YY	Cinnamaldehyde	conc.		
XX	ΥY	Persulfate	conc.		

Sumner and Plata; (Defended March 1, 2019...soon to be submitted)!

Geochemical conditions

Mode 1: Prioritize regions of "high risk"

Sumner and Plata; (Defended March 1, 2019...soon to be submitted)!

Mode 2: semi-quantitative prediction of reaction byproducts

THM: Trihalomethanes

Lat.	Long.	Ingredient	Mass (% w/w)	DOC	рН	Т	Br
ХХ	YY	Hypochlorite	conc.	\cap	\bigcirc	\cap	\cap
хх	YY	Chlorite	conc.		11		. / \

Sumner and Plata; unpublished

 $THM_{tot} = 10^{-.375}(t)^{0.258} \left(\frac{Cl_2}{DOC}\right)^{0.194} (pH)^{1.695}(T)^{0.507}([Br^-])^{0.218}$

APPLYING THIS TO THE "PLASTICS" PROBLEM: DESIGNING FOR DEGRADABILITY

Toward high-throughput degradation

96/month

- All-glass
- uL polymer
- 2 mL media

LC/MS screen

ng-pg sensitivity

GCxGC-MS screen

- Physicochemical properties
- Predict toxicity, fate, bioaccumulation

Outcomes:

- Environmental degradation kinetics
- Explicit measure of key environmental indicators **Toward first-principles** understanding of degradation kinetics

GCxGC reports on physicochemical properties

$log P_i = aU_{1,i} + bU_{2,i} + c$

- 1. Vapor pressure
- 2. Enthalpy of vaporization
- 3. Hexadecane-air partition
- 4. Octanol-air partition
- 5. Organic carbon-air partition
- 6. Air-water partition
- 7. Aqueous solubility
- 8. Octanol-water partition
- 9. Organic carbon-water partition
- 10. Bioconcentration factor
- 11. Molecular weight

Nabi, Arey, et al. *ES&T 2014* Arey, J.S. et al. *ES&T 2007*

Arey, J.S.; Plata, D.L.; et al. *ES&T. 2007*

Cute movies

Nota bona: Emissions shown for Athabasca oil sands process water

Model Parameters

Mean wind speed: 3.34 m s⁻¹ Mean water temp: 9 °C Mean depth: 8.5m Mean particle size: 0.5 um daily recharge; sorption equilibrium rapid; *n*C₉-*n*C₂₅ range

Dompierre and Barbour (2016)

Drollette, Plata; unpublished after Liggio, Plata et al. Nature 2016

How does the fundamental chemical structure inform the material and environmental performance?

Gilbertson, Plata et al. Chem Soc. Rev., 2015

Property (Characterization Parameter)

Long-term vision: a priori prediction of environmental and material performance

T.S. Lin, C. Cowley, K.F. Jensen, B.D. Olsen. ACS Central Science 2019 Model., 57 (8), 1757–1772 (2017).

Environmental optimization needs to add value

Thank you attendees!

Applications of graphene and CNTs

Meijo Nano Carbon Corp Ltd.

Proposed mechanism of nanotube growth

Vapor-Liquid-Solid (VLS) or Vapor-Solid-Solid (VSS) Model

Compatible Substrate such as Si

nanobliss.com; A. John Hart MIT 2006

Baker Carbon 1989

A chemist's route to a mechanism: Kinetics!

In collaboration with: John Hart (MechE, MIT) Brian Wardle (AeroAstro, MIT)

Nanotechnology \na-nō-tek-'nä-lə-jē\:

the branch of technology that deals with dimensions and tolerances of less than 100 nanometers, especially the manipulation of individual atoms and molecules

Extract and enrich via liquid-liquid extraction

Better separation enable process studies in complex mixtures: GCxGC

- Unique fatty acid distribution
- Phthalates stand out from typical oil hydrocarbons
- Radical initiators detected
- Halogenated compounds mostly as reaction by-products

Hoelzer, Sumner, Plata et al. EST 2016

• Hopane biomarkers as fingerprints of formation source, thermal history

Evidence for organic chemical transport to groundwater?

Proximity-to-well relationships

Drollette, Plata et al. PNAS 2015

Geochemical source indicators

Not from leaky casing

Geochemically young

Drollette, Plata et al. PNAS 2015 Warner et al. PNAS 2012

High DRO lacks Marcellus brine signature

S

6x10⁵ 4x10⁵ A/B Water Type Type A: CaHCO₃ enriched Type B: NaHCO₃ enriched

Type D: Cl⁻ enriched (Marcellus)

Candidate sources for DRO without GRO

A surface-derived source: Accidents

- Consistent with disclosed HVHF additives
- No evidence long-range transport of organic compounds from deep shale over geologic timescales
- Actionable!

Groundwater Samples July 2013 (n = 16)

Groundwater Samples May 2012 (n = 23)

Drollette, Plata et al. PNAS 2015

Mechanistic studies

Brine matters

Sumner and Plata, EST, 2018

Brine composition

1 (Cont.)

Sumner and Plata, Environ. Sci.: Processes & Impacts (ESPI), 2018

Inorganic Composition $CI \rightarrow Br \rightarrow I$

Temperature/ **Pressure** T: 40 - 100°C (100 - 212°F) P: 275 - 410 bar (4,000 - 6,000 psi)

Operator decisions pH (1-7) oxidant additions (persulfate, chlorite)

Sumner and Plata, Environ. Sci.: Processes & Impacts (ESPI), 2018

Are such transformations possible in situ?