

Elsa Olivetti Department of Materials Science & Engineering

Informing design of resource-effective materials, processes and systems

Resource-effective decision making for design of materials, operations, industries, and systems

Materials do not exist in isolation, they are part of complex networks.

Analysis of Potential Supply Chain Bottlenecks in Metals for Li-ion batteries

Joule 2017

Massachusetts Institute of Technology Department of Materials Science & Engineering

Slide 3

Resource restrictions for relevant materials

Static depletion above 30 years for all

Ni and Mn index is relatively constant indicating that the economics of demand drive the supply towards continued economical extraction.

Geographic concentration for relevant materials

Cobalt supply chain focuses on few dominant players

Co globally concentrated in mining, but it is also geographically concentrated in refining

Lithium supply chain is more diversified

Lithium carbonate recovered via multiple routes and geographically less concentrated

Resource and reserve estimates are still expanding

Amount of material needed per kWh varies by chemistry

	Use	Li	Со	Ni	Mn	Graphitic carbon
Lithium cobalt oxide	electronics	0.113	0.959	0	0	
Lithium nickel cobalt aluminum oxide		0.112	0.143	0.759	0	
Lithium nickel manganese cobalt oxide NMC-111	Auto, grid, other	0.139	0.394	0.392	0.367	~1.2*
NMC-622		0.126	0.214	0.641	0.200	
NMC-811		0.111	0.094	0.750	0.088	

Current metal required in kg/kWh * literature values

Focus on cobalt demand and supply

Massachusetts Institute of Technology Engineering Systems Division & Department of Materials Science

What is materials criticality?

Criticality ≠ Scarcity!

Market Imperfections

Inherent to mining Specific to the material From external factors

Functionality Constraints

Substitutability Feasibility of alternatives Importance of technology

Criticality Risk deemed too high by a decision-maker

R

Massachusetts Institute of Technology Engineering Systems Division & Department of Materials Science

Materials availability:

Byproduct dependency used as metric of criticality

Indicator	Relation with supply risk ^a	Frequency of use	Means of measurement/units
Country concentration of production	Direct	12	Herfindahl–Hirschman-Index
Country governance	Dep. on def.	10	Qualitative, index
Depletion time	Inverse	9	Years
By-product dependency	Direct	7	%
Company concentration in mining corporations ^b	Direct	5	Herfindahl–Hirschman-Index
Demand growth ^b	Direct	5	Qualitative, ratio
Import dependence ^b	Direct	3	%, net value
Recycling/recycling potential ^b	Inverse	3	Tons
Substitutability ^b	Inverse	3	Qualitative
Volatility of commodity prices	Direct	2	USD/kg, EUR/kg
Exploration degree	Inverse	1	USD, EUR
Production costs in extraction	Direct	1	USD, EUR
Stock keeping	Inverse	1	%
Market balance	Direct	1	Tons
Mine/refinery capacity	Inverse	1	%
Future market capacity	Inverse	1	%
Investment in mining	Inverse	1	USD/t, EUR/t
Climate change vulnerability	Direct	1	Qualitative
Temporary scarcity	Direct	1	Qualitative
Risk of strategic use	Direct	1	Qualitative
Abundance in earth's crust	Direct	1	Ppm

(Frenzel et al., 2017)

Criticality classification of byproduct and carrier pairs

Massachusetts Institute of Technology

Department of Materials Science & Engineering

Develop and refine metrics to guide decision making

System	Supply elasticity 95% Cl	Causes of inelasticity	
Zn-In	(-0.08, 0.29)	Supply limited by production capacity from carrier	
Cu-Se	(-0.03, 0.09)	Supply limit of carrier; Limit of recovery efficiency (~50%)	Lack of global price setting mechanism
Zn/Coal-Ge	(-0.31, 0.36)	National stockpiling strategy	

Byproduct status as indicator of criticality?

- Sometimes...
- Yes for indium
- Mixed evidence for selenium and germanium's inelastic supply, including:
 - the supply limit of carrier,
 - recovery efficiency limits,
 - lack of a global price-setting mechanism
 - national strategic stockpiling that disrupts market forces.
- Conclusion: Difference between supply and supply potential more indicative of criticality than 'byproduct dependence'

Novel materials development

Non-cobalt containing cathodes

Computational efforts have accelerated the materials discovery process

Develop recipe database to improve understanding of materials synthesis

教育性系統	Contents lists available at ScienceDirect	
	Electrochemistry Communications	district tenting
ELSEVIER	journal homepage: www.elsevier.com/locate/elecom	

2. Experimental methods

NaNi_{1/3}Co_{1/3}Fe_{1/3}O₂ was synthesized by solid-state reaction. Excess amounts of Na₂O, NiO, Co₃O₄ and Fe₂O₃ were mixed and ball milled for 4 h at 500 rpm rate, and the resulting material was collected in the glove box. About 0.5 g of powder was fired at 800 °C under O₂ for 14 h before it was quenched to room temperature and moved to a glove box filled with argon.

X-ray diffraction (XRD) patterns were collected on a PANalytical X'Pert Pro equipped with Cu Ka radiation in the 2θ range of 5–85°.

Identify hundreds of thousands of manuscripts by target material

Generate codified, machine readable database of **recipes**

Extract synthesis text through machine learning and rule-based methods

NaNi_{1/3}Co_{1/3}Fe_{1/3}O₂ was synthesized by solidstate reaction. Excess amounts of Na₂O, NiO, Co₃O₄ and Fe₂O₃ were mixed and ball milled for 4 h at 500 rpm rate, and the resulting material was collected in the glove box. About 0.5 g of powder was fired at 800 °C under O₂ for 14 h before it was quenched to room temperature and moved to a glove box filled with argon.

Recipe database

Resource-effective material development: suggesting multiple routes for synthesis

Suggesting synthesis conditions for materials, extend to novel materials

Massachusetts Institute of Technology Department of Materials Science & Engineering Scientific Data, 2017 Chem. Of Materials, 2017 npj Computational materials, accepted

Resource-effective performance of materials

- Systems thinking divorced from materials science and vice versa masks opportunities
 - As system, material, and process complexity increases need novel ways to analyze problems
- Materials have critical role in solving key economic and environmental problems
 - Solutions that account for scale are needed to address the impact of materials use

Thank you

olivetti.mit.edu

Thank you

olivetti.mit.edu

