COMPUTATIONAL MANUFACTURING

Wojciech Matusik MIT EECS

Ö

Sonova hearing aid

Insvisalign braces

Osteoid cast

ADDITIVE MANUFACTURING

MULTI-MATERIAL ADDITIVE MANUFACTURING

MULTI-MATERIAL ADDITIVE MANUFACTURING

ADVANCED APPLICATIONS FOR MULTI-MATERIAL ADDITIVE MANUFACTURING

STRAIN SENSORS

Silver in elastic matrix
 High ∆R/R
 Repeatable, no drift or offset

Resistance vs. strain

TRANSISTORS

P-TYPE DEPLETION MODE

Control voltage

Pixel color - tuning applied control voltage

- \oslash **1.5V operation**
- Modulate transparency
- Contrast oxidized/reduced state of PEDOT

Equivalent circuit

Fully printed – 5 materials
 Low-temperature process
 No post-processing

SELF FOLDING CIRCUITS

5 min after peeling

SELF FOLDING CIRCUITS

ADVANCED MANUFACTURING

Freedom of Form

Accessibility

THREE FUNDAMENTAL QUESTIONS FOR COMPUTATIONAL MANUFACTURING

HOW TO COMPUTE THE SPACE OF POSSIBLE MATERIAL PROPERTIES?

MICROSTRUCTURES

Heterogeneous material

Base materials

MAPPING MICROSTRUCTURES TO MATERIAL PROPERTIES

Heterogeneous material

Base materials

What is the range of achievable physical properties (gamut)?

TRADITIONAL MATERIALS

Range of mechanical material properties for traditional homogeneous materials such as foams, metals and polymers.

PHYSICS SIMULATION

Finite element solvers with multi-grid preconditioners to simulate multi-physics problems

MAPPING MICROSTRUCTURES TO MATERIAL PROPERTIES

A microstructure

Poisson's ratio

Young's Modulus

• Microstructure samples

- Microstructure samples
- Compute level set

- Microstructure samples
- Compute level set
- Find random seeds near the level
 set boundary

- Microstructure samples
- Compute level set
- Find random seeds near the level set boundary
- Find gradient towards outside of gamut

- Microstructure samples
- Compute level set
- Find random seeds near the level set boundary
- Find gradient towards outside of gamut
- Discrete and continuous sampling

- Microstructure samples
- Compute level set
- Find random seeds near the level set boundary
- Find gradient towards outside of gamut
- Discrete and continuous sampling
- Update level set

GAMUT FOR MICROSTRUCTURES WITH CUBIC SYMMETRY

GAMUT FOR MICROSTRUCTURES WITH CUBIC SYMMETRY

SUMMARY: FROM DESIGN TO FUNCTION

HOW TO DISCOVER MATERIAL FAMILIES WITH EXTREME PROPERTIES?

DISCOVERY OF MICROSTRUCTURES

[Bickel et al. 2010]

[Kadic et al. 2012]

[Shim et al. 2013]

[Babaee et al. 2013]

[Meza et al. 2014]

(b) --0.2 --0.2 --0.4 --0.6 --0.8

[Clausen et al. 2015]

[Kadic et al. 2016]

[Volgiatzis and Chen 2016]
CONVENTIONAL MATERIAL DISCOVERY

Design new materials by intuition and trial-and-error

CONVENTIONAL MATERIAL DISCOVERY

Design new materials by mimicking the nature

COMPUTATIONAL FRAMEWORK

Automated discovery of new microstructural materials

Input: Estimate Gamut

Identify Families

Family representative Skeleton Fitted structure

Fit Templates

Reduce Parameters

INPUT: MICROSTRUCTURE GAMUT

STEP 1: IDENTIFY MICROSTRUCTURE FAMILIES

STEP 2: FIT MICROSTRUCTURE SKELETONS

Extracting a skeleton

Template definition given a skeleton

STEP 3: REDUCE TEMPLATE PARAMETERS

Range of material properties for Family 4

Reduced parameter directions

EXAMPLE: PARAMETER REDUCTION

Reducing joint beam thickness decreases Young's modulus E and Poisson's ratio.

EXAMPLE: PARAMETER REDUCTION

Shifting joint location outwards increases shear modulus G and Poisson's ratio.

RESULT: DISCOVERY OF NEW AUXETIC MATERIALS

Five families of new microstructural materials with extremal auxetic properties

MICROSTRUCTURE SAMPLING USING TEMPLATES

OUTPUT – PARAMETRIC MICROSTRUCTURES

```
%\param rparam row vector of 2 reduced parameters in the range [-1,1].
 1
       %\param family integer family index
 2
       %\param res integer of 3D grid resolution
 3
       %e.g. st = struct template([0.1 0.2], 1, 64);
 4
5
     □function st = struct template(rparam, family, res)
         st = zeros(res, res, res);
 6
         %full parameter
 7
         [params, withCap]= loadParams('param.txt');
 8
         startIdx = (family-1)*5;
9
         param = params{startIdx + 1};
10
         for j = 1:size(rparam,2)
11
           r = rparam(j);
12
13
           if(r>0)
               param = (1-r)*param + r*params{startIdx+2*j};
14
15
           else
               param = (1+r)*param - r*params{startIdx+2*j+1};
16
17
           end
18
         end
         nParam = size(param,2);
19
         paramPerBeam=9;
20
         nBeam = nParam/paramPerBeam;
21
22
        for i = 1:nBeam
     Ē
23
             beamParam = [param(1+6*(i-1) : 6*i) param(nBeam*6 + 1 + (i-1)*3 : nBeam*6+i*3)];
             st = drawCuboid(st, beamParam, withCap(family));
24
25
         end
         st = mirrorCubicStructure(st);
26
27
       -end
```

DISCOVERED AUXETIC MECHANISMS

Slanted column

Rotating triangle

EXPERIMENTAL VALIDATION

Test Machine

Tensile Test

Compression Test

SUMMARY: FROM FUNCTIONS TO MECHANISMS

Microstructure Gamut

Mechanism

HOW TO SYNTHESIZE DESIGNS WITH DESIRED FUNCTION?

DIRECT DESIGN VS. GENERATIVE DESIGN

Direct Design

Generative Design

TOPOLOGY OPTIMIZATION

TOPOLOGY OPTIMIZATION

CHALLENGES

Hardware: Object-1000 Plus

- Up to 39.3 x 31.4 x 19.6 in.
- 600dpi (~40 microns)
- 5 trillion voxels

Software: SIMP Topology Optimization

Up to millions of elements

Difficult to handle multiple materials

TWO-SCALE TOPOLOGY OPTIMIZATION

TWO-SCALE TOPOLOGY OPTIMIZATION

TOPOLOGY OPTIMIZATION - FABRICATION

A 3D-printed gripper

Gripper in action

EXAMPLE: TARGET DEFORMATION

Optimizing for target deformation on boundary cells

EXAMPLE : SOFT ROBOTIC FISH

Target 1: flapping down

Target 2: flapping up

EXAMPLE : BRIDGE

Push

17 inches 10k pixels

A Trillion Voxels

8.5 inches 5k pixels

EXAMPLE : FLEXURE

Multiple objectives

Topology Optimization Iterations

SUMMARY: THREE FUNDAMENTAL QUESTIONS

- 1. How to compute the space of possible material properties?
- 2. How to discover material families with extreme properties?
- 3. How to synthesize designs with desired function?

Multi-material 3D printing will become an important manufacturing method

Source: Wohlers Report

Computational methods will redefine the design process

- Engineers will specify material properties and not materials
- Engineers will specify product function and not individual elements

Computational methods will redefine the process of scientific discovery

• Material discovery will become more automated, relying on physical simulation, data generation, and machine learning

Computational methods will redefine cyber-physical system design and mechanism understanding

- Agile drones, fast walkers, efficient swimmers
- Discover the optimal underlying mechanisms

Computational methods will guide the development of new manufacturing processes

Base Materials

Material Property Gamut

Manufacturing

