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respond to their surroundings
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disappear harmlessly
biocompatible without sacrificing
technological performance

have “non-obvious” functions
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Nature as source of inspiration

From mythology...

Daedalus and Icarus, Charles Paul Lando

Leonardo da Vinci, Codex Atlanticus,-l;o'lioh 846 v"

...to the study of innovative solutions



Nature as source of inspiration for engineering innovative solutions...

Bioinspiration
Biomimicry
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Shinkansen train nose Kingfisher's beak

lited covert feathers
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Falcon wing feather Thermal chimneys

P.-Y. Chen et al. / Progress in Materials Science 57 ,1492-1704 , (2012)



Nature as source of inspiration for engineering innovative solutions...

Fractured mollusk shell

Prismatic calcite

Nacre

Kroger, Science, 325, 1351-1352, (2009)



Nature as source of inspiration for engineering innovative solutions...

Future composites Alumina/PMMA
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Adapted from Munch et al., Science, 322, 1516-1520 (2008) and Wegst et al Nat Mater 14, 23-36 (2015)




Nature as source of inspiration for engineering innovative solutions...

Schroéder-Turk et al J Struct Biol 174(2), 290-295 (2011)
Michielsen et al, Interface 5, 85-94 (2010)
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Structural biopolymers are the building materials of life — they realize
a diversity of functions that provide structural support, locomotion
and protection
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Insect Silk: One Name, Many Materials
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Biopolymers can be regenerated to their molecular form — the
reverse engineering process yields aqueous suspensions where the
biomolecules are in a state similar to the extracellular one

Engineering design: Sources: raw materials Processing: extraction
I. Regeneration in aqueous % /
solutions f) @ ™ o
A

Micelles
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Assembly of silk materials

Key features:

I. Low-energy processing

ii. Mild environments
iii. Self-assembly

iv. Polymorphism

00[18

Civil and
Environmental
Engineering

Thermodynamics of self-assembly
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w<o |
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AG <0 for Low T (stable)
AG > 0 for High T (unstable)

Energy
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AG=AH - TAS

AG<(0 stable
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Assembly of silk materials

Thermodynamics of self-assembly
Silk fibroin polymorphism

=~ amorphous

Key features: @D helices
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Z
I. Low-energy processing 2 9
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iii. Self-assembly

v
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Assembly of silk materials

Key features:

I. Low-energy processing
ii. Mild environments
iii. Self-assembly

iv. Polymorphism

Marelli et al, PNAS 2017
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Silk fibroin self-assembly

Silk solution

Solution state
Electrostatic repulsion

Silk fibroin heavy chain
in amorphous conformation
(no intermolecular interactions)
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Assembly of silk materials

Key features:

I. Low-energy processing
ii. Mild environments
iii. Self-assembly

iv. Polymorphism

Marelli et al, PNAS 2017
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Silk hydrogel

Intermolecular interactions |
Stable go_nformation
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Silk fibroin heavy chain in helical
and beta-sheet conformation
(intermolecular interactions and crosslinks)

Silk fibroin self-assembly
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Assembly of silk materials

Silk fibroin self-assembly

Silk monolith

Intermolecular crosslinks
Stable conformation

Key features: Armorphous fibroin i
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I. Low-energy processing
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iii. Self-assembly ? \
. Spinning silk nanoparticles

“..into crystalline nanofibrils

iv. Polymorphism

. Silk fibroin Eéa’vy chain in
Marelli et al, PNAS 2017 beta-sheet conformation
(intermolecular crosslinks)
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Biopolymers self-assembly is driven by modulating the molecular
concentration in the suspension and environmental conditions —
biological entities can be added at the point of self-assembly

. . i Biopolymer
Engineering design: e
I. Regeneration in aqueous x
solutions ;
ii. Self-assembly in physiological Q  Addition of
. dopants
conditions
Cells,
enzymes,
GFs,
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. . ater removal,
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with programmable functions TR
shear stress,
electric field,
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Regenerated biopolymers can be used as fundamental building
blocks to address unmet technological challenges in regenerative
medicine and advanced manufacturing

Key features:

sustainable
processed in water
controlled degradation

Self-assembly—— ‘

ed | b|e Mesostruct'ure

. Polymorphism
non-toxic L Bound water
implantable

solvent casting

technological
preserves bio-function

I H
I I I I Marelli and Omenetto J. Mater. Chem. C 3, 2783-2787 (2015)



Forms and Functions



Material form: the silk protein can be fabricated in multiple

formats that can be combined to orchestrate the engineering of

Monoliths Fibres Particles

materials with multiple
functions in a single
material format
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Inkjet printing of silk fibroin:
from printable forms to printable functions

Silk fibroin polymorphism

(a) P
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i. Unprecedented versatility
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ii. Biotic/abiotic interface | functional
ST il
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i. Biodegradable/compostable

ii. Organic/inorganic interface

100 um

Marelli, Tao et al, Adv. Mater., 2015
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IJP of silk fibroin: From printable forms to printable functions
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From printable forms to printable functions

PDA
+ Antibody + silk

UV exposure

bacteria exposure
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Engineering



Laboratory for
Advanced
Biopolymers

LAB.

Civil and
Environmental
Engineering

COne

Nanofabrication of structural proteins can be achieved using
top-down approaches as electron beam lithography

Engineering nanostructures:

ii. The process can be achieved

Material final structure can be
engineered with top-down
strategies.

. 1. Aqueous
f

silk solution

h\.
-

POSITIVE

completely ‘out of the hood’
with water-based ‘chemistry’

)
O

... NEGATIVE
) . spin-coating

Sub-10 nm resolution can be
achieved both as positive or

negative resist

nature
nanotechnology

Kim, Marelli et al, Nature Nanotech, 2014
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Nanofabrication of structural proteins can be achieved using
top-down approaches as electron beam lithography

Engineering nanostructures:

i. Material final structure can be _
engineered with top-down S
strategies. SLITITTY

ii. The process can be achieved
completely ‘out of the hood’
with water-based ‘chemistry’

iii. Sub-10 nm resolution can be
achieved both as positive or
negative resist nature

nanotechnology

Kim, Marelli et al, Nature Nanotech, 2014
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Biofabrication of structural proteins in advanced materials can
be achieved by directing and templating self-assembly and by
modulating polymorphism, bound water and molecular weight

Engineering structures:

i. The material final structure
can be engineered with
bottom-up approaches.

ii. Templating self-assembly
allows to obtain complex

shapes with no need for
'machining’ 92 wt%e HyQ

iii. Alternatively, simple
biopolymers blocks (prism or
cylindrically-shaped) may be
fabricated and then
machined to the final shape

Marelli et al, PNAS, 2017
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Biofabrication of structural proteins in advanced materials can
be achieved by directing and templating self-assembly and by
modulating polymorphism, bound water and molecular weight

Engineering structures:

Fabrication of three dimensional
silk fibroin complex structures

(e.g. gears) of defined 90 wt% H-O

: - : 2 42 wt% H
dimensions by molding process. 18 wt% H

9 wté

Designing the original master
has to take into account for
shrinkage in the gel-solid
processing step, due to

evaporation of the mold. 30 mm 20mm 14 mm

Marelli et al, PNAS, 2017
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Unexpected functions can be achieved by doping biopolymer
structures with water-soluble molecules that impart ‘orthogonal’
properties to the final material

Designed functions: 1 W s R T
i ionaliti gy —00—
i. New functionalities may be L B L’j

achieved by fabricating

'hybrid materials’ via doping
at the point of material self-

assembly

Designed
function
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-
) =

Marelli et al, PNAS, 2017
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Unexpected functions can be achieved by doping biopolymer
structures with water-soluble molecules that impart ‘orthogonal’
properties to the final material

Designed functions: L g 2 DI

. . o " : T ey b ‘ _>:00 -

. New functionalities may be L E. 8
achieved by fabricating | ‘
! i i "'\ i Designed
hybrid m.aterlals V|a‘dop|ng Designe _—
at the point of material self- ﬁswt Gelsolid  structure
assembly — »

ii. Gold nanorods with tailorable
plasmonic resonances may
be incorporated, yielding
mechanical components that
heats up when irradiated with
visible (red) and near-IR light.

I I I [
I I Marelli et al, PNAS, 2017
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Unexpected functions can be achieved by doping biopolymer
structures with water-soluble molecules that impart ‘orthogonal’
properties to the final material

Designed functions: he SHg 28iigel e
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assembly | Rl B

2 a0 s A

ii. Engineered silk fibroin screws £ ;:‘ T m—
with biological functions - E o AP0 H5ia & 0 ke
horseradish peroxidase can ¢ Talet 48 R
be incorporated in 100 4 350-230 kDa 4 310-150 kDa
engineered silk screws to Se t4 % 422095kDa  13075KDa
impart catalytic activities to & . A

the material.

A

4

Residual activity [%
N
o

o

100 150 200 250 300 350

. 0 50
I I I - Time [h]
I I Marelli et al, PNAS, 2017

@]




Laboratory for Civil and
Advanced Environmental
Biopolymers ° ° ° one | Engineering

Unexpected functions can be achieved by doping biopolymer
structures with water-soluble molecules that impart ‘orthogonal’
properties to the final material

Designed functions:

i. New functionalities may be
achieved by fabricating
'hybrid materials’ via doping
at the point of material self-
assembly

ii. Polymers that change in color
when exposed to mechanical
stresses may be incorporate
to design mechanical

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

components that ‘sense’ Strain (%
When they are p|astica||y Silk fibroin Strain-induced blue=>red
. . . molecular weight chromatic transition [%]
deformed (i.e. yield point) 50,230 KD - |
310-150 kDa 6.24+0.77
220-95 kDa 7.59+0.45
I I I i I- C 130-75 kDa 8.56+0.82

Marelli et al, PNAS, 2017
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Amount of wastage in developing countries, millions of metric tons and as % of production?

The largest sources of loss in developing countries are in fruits and vegetables and the postharvest

storage of cereals, roots, and tubers.

Fruits and
Vegetables ‘
{ Production Postharvest || Processing | Distribution Consumption
‘ a5 : 47
ceeas N s
! 39 !
Roots and 24 iM 21 12 5
Tubers T N e
Milk and 11 21 9 24 .
Dairy ___-_—_-___
Meat and i o I 5 0 13 6
Fish
Oilseeds 10 12 8 ) 1
andPulses T — [N 0

Primary Root Causes

Fruits and Vegetables:

* Production: 15%" is lost through
manual harvest, bad weather during
the harvest season, and premature
harvest due to cash constraints.

* Postharvest: 8% is lost, mainly due to
bruising or damage from improper
packaging or handling, lack of cold
storage in warm and humid climates,
and seasonality that yields surpluses.

* Processing: 18% is lost due to high
seasonality and poor storage,
together lowering incentives to
build processing capacity that meets
total demand.

Cereals:

* Postharvest: 7% is lost due to
improper storage, attributable to
poor hygiene, pest infestation or
bumper harvests beyond capacity.

Roots and Tubers:

* Postharvest: 16% is lost, mainly due
to lack of cold storage in warm
climates and distance to market.

*Note: Percentages listed are share of total category production in developing countries.
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Silk Fibroin as Edible Coating for
Perishable Food Preservation
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Edible coating for perishable food preservation

= THEWALLSTREETJOURNAL. &

1 D1 - - 23% beta-sheets A Silky Solution to the
Water 1 hour = 36% beta-sheets Problem of Wasted

Food?

Dip coating 4 x2 = D2

«4 > D4 annealing 6 hours - 48% beta-sheets

. \ 12 hours > 58% beta sheets
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a
No coating 23% beta-sheets 58% beta-sheets
’ ’I - TIME SUBSCRIBE
This One Surprising Trick Might
Keep Fruit Fresh for Longer
b Olivia B, Waxman

MORE

@

Marelli et al, Sci. Rep., 2016
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Edible coating for penshable food preservation

No coating Silk fibroin coating : Silk fibroin coating
23% beta,sheets : 58% beta-sheets
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Edible coating for perishable food preservation

Silk films hydrodynamic permeability Diffusivity of water in silk films

'%', 80 [ ] * L] '
T 7 *
E‘ 60
% 50 o $0.6
~ 204 ® 36%
3 30 z . 48%
§ 2 i m 58%
s 10 O =
5 0 5 10 15 20 25 30
a 36% 48% 58% b Time [min]
- O, diffusion in silk films ~ _ 80  Strawberries respiration rate
= .
8 90 < 70
S 80 o
b= ¥ 60
® __70 a
O »
o O 50
60
c NE £
0O 550 = 40
g .9
gz 40 g 30
T 230 2 %
£ 72 5
- o~
£ 10 10
R 98
L o (o) (o) (o) O 0
¢ 23%  36% 86 56% d Nocoating 23% 36%  48%  58%
Z g Strawberries firmness
[0}
(8]
2 7
NSl
c &
o
2 s [ .
o 4 I
{ o=
o 3
a 1
£ 2 I
3
g 1
I X 0
=g  Nocoating = er § i 2 Marelli et al, Sci. Rep., 2016

M asreceived Mday1 Mday3 day 7



Laboratory for Civil and
Advanced Environmental
° ° one | Engineering

Biopolymers

Edible coating for perishable food preservation
As received

Silk fibroin Silk fibroin

No coating _
coating coating

d




Structural biopolymers provide an unprecedented tool to
address the technological thirst for innovative solutions in
advanced materials for agriculture and manufacturing

»
New bricks to redefine the
fabrication rules at the nano-,
meso- and micro-scale

Universal building blocks that liaise
between the biotic and abiotic
worlds
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