

Drivers of technological improvement in clean energy systems

Jessika E. Trancik

MIT Institute for Data, Systems, and Society

MIT Japan Conference January 25, 2019

Solar (photovoltaic) panel from the 80s

.

Solar energy today

1977 Volvo electric vehicle

Electric vehicles in 2016: Tesla Model S

Example: Photovoltaics (solar) modules cost decline

Why did photovoltaics module costs fall?

Government policy drivers of PV modules' cost decline?

 60% research and development funding and 30% marketstimulating policies?

or

• 30% research and development funding and 60% marketstimulating policies?

Approaches to modeling technology costs and innovation

Correlational analysis of technology innovation trends

Approaches to modeling technology costs and innovation

- Correlational analysis of technology innovation trends
- Static engineering models

e.g. Fu et al. 2016, Seel et al. 2014, Goodrich et al. 2012, Powell et al. 2013, Jones-Albertus et al. 2016

Approaches to modeling technology costs and innovation

- Correlational analysis of technology innovation trends
- Static engineering models
- Dynamic, mechanistic models of technological change

Three-step process to identify cost change drivers

- Develop cost equations
- Derive cost change equations ('low-level mechanisms')
- Identify key human efforts, strategies ('high-level mechanisms')

Photovoltaics cost decomposition

Cost equation

where

number of cells per module n_{mc} number of wafers per cell n_{cw} yield at wafer manufacturing y_w yield at cell manufacturing y_c yield at module manufacturing y_m quantity of input i per wafer ϕ_{wi} quantity of input i per cell ϕ_{ci} quantity of input i per module ϕ_{mi} price of input i. p_i

Reduced form cost equation

$$C\left(\frac{\$}{W}\right) = \frac{\alpha}{\sigma A \eta y} \begin{bmatrix} Av\rho p_s + cA + p_0 \left(\frac{K}{K_0}\right)^{-b} \\ \downarrow & \downarrow \\ \text{other} \\ \text{silicon} \\ \text{cost} \\ \text$$

Key low-level mechanisms

- Module efficiency
- Yield
- Wafer area
- Silicon usage
- Silicon price
- Manufacturing plant size

F

Photovoltaics cost decomposition

Kavlak, McNerney, Trancik, Energy Policy 2018.; Inspiration from Nemet, Energy Policy 2006

Photovoltaics component cost change equations

Example: Cost change due to changes in module efficiency

$$\Delta C_{\eta} = \sum_{i=1}^{3} \widetilde{C}_{i} \ln\left(\frac{(\eta^{2})^{-1}}{(\eta^{1})^{-1}}\right) = -\sum_{i=1}^{3} \widetilde{C}_{i} \ln\left(\frac{\eta^{2}}{\eta^{1}}\right)$$

Low-level mechanisms of cost reduction

Mechanisms of cost reduction

Low-level mechanisms

Mechanisms of cost reduction

High-level mechanisms of cost reduction

EOS=economies of scale LBD=learning by doing

Government policy contributions to cost reduction

% contribution from market-stimulating policies

Government policy drivers of PV modules' cost decline?

 60% research and development funding and 30% market stimulating policies?

or

• 30% research and development funding and 60% marketstimulating policies?

Trancik, Brown, Jean, Kavlak, Klemun, Edwards, McNerney, Miotti, Mueller, Needell, Technical Report, 2015

Why did photovoltaics module costs fall?

- Efficiency, yield and other low-level mechanisms responsible (many possible knobs to turn)
- R&D and economies of scale dominant high-level mechanisms
- Market expansion policies played a critical role in reducing costs

Prospective assessment of PV module cost reduction

EOS=economies of scale LBD=learning by doing

Profitability of storage technologies for solar and wind energy

Braff, Mueller, Trancik, Nature Climate Change 2016

Profitability of storage technologies for solar and wind energy

Braff, Mueller, Trancik, Nature Climate Change 2016

Cost and emissions of vehicle powertrains (see carboncounter.com)

Miotti, Supran, Kim, Trancik, *Environmental Science & Technology* 2016; carboncounter.com

Daily adoption potential of electric vehicles

Needell, McNerney, Chang, Trancik, Nature Energy 2016

Website: trancik.mit.edu

Thanks to the US DOE's Solar Energy Evolution and Diffusion Studies for funding this research.

CARBONCOUNTER.com | Cars evaluated against climate targets