Massachusetts Institute of Technology

Extremely cost-effective semiconductor layer-transfer process via graphene & Highly uniform advanced RRAM

Jeehwan Kim

Assistant Professor Mechanical Engineering Materials Science and Engineering Research Laboratory of Electronics

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

- **1. 2D material based layer transfer**
- 2. Highly uniform epitaxial RRAM (epiRAM)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

1. 2D material based layer transfer (2DLT)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Major bottleneck for advancing semiconductor technology

Substrate: Essential building block to form Electronic/optoelectronic devices Epitaxial growth: Process for forming device film structures on the substrate

Conventional lift-off technique

Chemical lift-off (epitaxial lift-off, ELO)

- Pro: Control of release interface
- Cons:
 - Post-treatment required
 - Slow release
 - Limited application mainly for GaAs & InP

Optical lift-off (Laser lift-off, LLO)

- Pro: Control of release interface
- Cons:
 - Post-treatment required
 - Cracking from local pressurization
 - Slow release
 - Limited application mainly for transparent substrate

2D material based layer transfer (2DLT)

sp²-bonded graphene: No broken bonds on the surface

- Precise release from graphene
- Post-release treatment NOT required
- **1 sec** release due to weak interaction
- Universal for any materials

2DLT enabled by "REMOTE EPITAXY"

ConventionalEpitaxial
FilmEpitaxySubstrate

Remote Epitaxy

Epitaxial Layer

Graphene

Substrate

2DLT

Remote epitaxy of GaAs(001) film on GaAs(001) substrate through "monolayer graphene"

Remote homoepitaxy: copy/paste dislocation-free films

HRTEM

DFT calculation

Critical interaction gap: 1 nm

In collaboration with Prof. Kolpak

Dark field XTEM: Strain field

	GaAs film	
	Graphene	
	Substrate	
<u>1μm</u>		

No sign of dislocation

Remote homoepitaxy is possible through graphene

Y. Kim, S. Cruz, J. Kim et al., Nature (2017)

Unversality of 2DLT

Growth of single-crystalline GaN, GaAs, InP, GaP, Ge on

EBSD mapping 111 001 101

Graphene Reusability (GaN as an example)

No post-treatment required for further recycle

Role of graphene

- Turning wafers into the copy machine
- Dislocation-reducer/filter
- Release layer \rightarrow 1sec release
- Wafer Surface protection \rightarrow infinite reuse

Sponsor:

Implication for display/lighting technology

8

Voltage (V)

10

Low-cost flexible LEDs (solid state lighting/microLED)

Red LED (III-V) 15 10 mA Light emission from **Dislocation-free** p-GaN LEDs on graphene Current (mA) 10 LED on graphene MQW 14 mA GaAs cap p+ Al_{0.2}Ga_{0.31}In_{0.49}P InGaP n+ Al_{0.2}Ga_{0.31}In_{0.49}P n-GaN **Dislocation-free GaN obtainable** graphene n++ GaAs buffer LED grown on Graphene by GaN growth on graphene/GaN LED grown on GaAs 0.15 **High efficiency lighting** Current (A) 0.10 High pixel density microLED 0.05 InGaN Graphene InGaN 0.00 GaAs Wafer 2 3 μm -1 0 1 InGaP Bias (V) Host substrate

Y. Kim, S. Cruz, J. Kim et al., *Nature* (2017)

Blue LED (III-N)

Heterointegration

optical interconnect

Wide field of view focal plane arrays

2. Highly uniform advanced RRAM

- Epitaxial RAM (epiRAM)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Why Resistive Random Access Memory (RRAM)?

Wide applications

- Neuromorphic computing, NVM storage, Logic
- High scalability (10nm size)
- Ins switching
- Large connectivity (2-terminal structure)
- Low energy consumption
- 3D structure
- CMOS compatibility

Status

Requirement for commercialization

- High endurance and long retention
- High on-off ratio
- **Cycle-to-cycle uniformity**
- Device-to-device uniformity
- \Box Current suppression in low voltage/reverse bias \rightarrow Suppression of sneak paths
- Linear synaptic weight update for neuromorphic (Analog)

Туре	DC on/off ratio (10^n)	Retention	Endurance (10^n cycles)	Set Voltage Spatial Variation (σ/μ)	Set Voltage Temporal Variation (σ/μ)	Reference
a-Si:Ag	4	х	х	0.03	х	4
HfO _x :Ag	10	~ ms@ RT	6	х	x	11
Al ₂ O ₃ /TiO _x	4	14 hr@ 77 °C	3	0.11	х	1
PEI/PEDOT:PSS	1	25 hr@ RT	X	х	×	9
Ta ₂ O _{5-x} /TaO _{2-x}	1	2.8 hr@ 250 °C	12	х	х	13
ZnO	1	0.3 hr@ RT	2	х	0.06	30
TiO _x	1	2.8 hr@ RT	2	0.10	x	31
SiO ₂	3	110 hr@ 85°C	Х	0.10	Х	32

None of the currently reported RRAM fully satisfies requirements

Conventional ReRAM devices- Valence Change Memory (VCM)

- Good endurance and retention
- Device non-uniformity
 - (Cycle-to-cycle / Device-to-device)
 - Conductive filament is not confined in single path that cause stochastic uncorrelated switching events.
- Low On-off ratio
 - Digital: ~10 / Analog: ~2

S. Kim, et al., ACS Nano, 8, 10262-10269 (2014)

Conventional ReRAM devices- Electrochemical Metallization Memory (ECM)

High On-off ratio

Digital > 10⁴For reduced power, reduced bit-error-rate(BER) and increased read bandwidth in high density RRAM

Device non-uniformity

(Cycle-to-cycle / Device-to-device)

Retention/Endurance trade-off

- Weak Ag-channel formation enhances endurance but reduces retention time
- Strong Ag-channel formation increases retention time but deteriorate endurance

UIT

What is the source of device variation?

Due to amorphous switching medium

So many filament candidates

"1"

Can single-crystalline Si do resistive switching?

On-off ratio > 10⁴

Spatial set V variation (device-to-device): 4%

Introduction of epitaxial RAM (epiRAM) for digital

Retention (Hr)

0

Reliable switching with different c.c

Self-selection

Summary of epiRAM performances

New epitaxial RAM (epiRAM) devices contains all required performances for digital and analog applications

- Long retention with long endurance
- Excellent spatial/temporal device uniformity
- High on/off ratio
 - good for both analog and digital
 - Analog: >250, Digital: 10⁴
- Self-selection to reduce the impact of sneak path
- Linear weight update
- Lower power consumption

	Retention	Endurance	Retention & Endurance	On-off ratio	Uniformity	Linearity	Self- selection
VCM	Excellent	Excellent	Excellent	Low	Good	Low	N/A
ECM	Excellent	Excellent	Bad	High	Bad	Low	N/A
OURS	Excellent	Excellent	Excellent	High	Excellent	High	Excellent

This will enable large-scale memory arrays

for digital application as well as for neuromorphic computing

Equipment

8" two-chamber MBE system (III-N and III-V)

2" MBE system (II-VI)

4" UHV CVD (epitaxial graphene, SiC, Si, Ge, diamond)

6" MOCVD (III-V, Si, Ge)

Collaborators

MIT:

Eugene Fitzgerald, Jing Kong, Alexie Kolpak, Jagadeesh Moodera, Richard Molnar

Harvard: Philip Kim

OSU: Jinwoo Hwang

ASU: Shimeng Yu

UIUC: Minjoo Larry Lee

IBM: Tze-Chiang Chen, Frances Ross, James Hannon, Devendra Sadana

Nanoelectronics group

Graduate students

Dr. Shinhyun Choi (EE) Dr. Wei Kong (EE) Dr. Kyusang Lee (EE)

Chanyeol Choi (EE)

Visiting student

Prof. Ibraheem Almansouri (EE)

Visiting **Scholar**

