Emerging Wireless Technologies: Millimeter Wave, Untethered VR, Smart Cities, Health IoT

Dina Katabi

Andrew & Erna Viterbi Professor

Emerging Applications

High-Throughput Millimeter Wave (mmWave) Systems

Spectrum Scarsity

Millimeter wave changes how wireless systems operate

Today: Broadcast

Millimeter wave changes how wireless systems

Operate
Millimeter Wave: Pencil-beam
Antennas

Communication is possible only when the beams are aligned

Millimeter wave radios use phased arrays to create a beam

Naïve Approach: Exhaustive Scan

N: number of possible directions

802.11ad Scan

Stage 1: Client uses omni-directional; AP scans directions

802.11ad Scan

Stage 2: AP uses omni-directional; client scans directions

O(N) measurements \rightarrow Still Too Slow

Can we find the best beam alignment without scanning the space?

Solution Idea

Construct a Multi-Armed Beam:

Simultaneously collects signals from multiple directions.

Multi-Armed Beams = Hashing

Hashing

• Pick multi-armed beams to create random hash functions

Voting

Estimate the true direction using voting

Implementation and Evaluation

Built a Millimeter Wave Radio with a Phased Array.

Number of Measurements

Our system uses orders of magnitude fewer measurements

Beam Alignment Latency

Number of Directions	802.11ad	Our algorithm
16	1ms	0.5ms
64	4ms	0.8ms
128	106ms	0.9ms
256	310ms	1.0ms

High-Speed Millimeter Wave Links with Low Delay

Untethered Virtual Reality

VR headsets require a cable connection to a PC

Stream 6.4 Gbps of data from PC to headset

Untethered Virtual Reality

Typical wireless systems: WiFi, cellular, etc.

mmWave Technology

Can we enable untethered VR?

Impact of Signal Blockage

Blocking millimeter wave signals results in a significant drop in data rate

How can we solve the blockage problem?

Idea

Millimeter Wave Mirror

Mirror Architecture

Mirror Architecture

Simple Architecture:

- No transmitter chain
- No receiver chain
- No baseband processor
- No coding/decoding

Data Rate Performance

Solved the blockage problem

Smart Cities

Smart City Services

Traffic Management

Detect Red-Light Runner Smart Parking

Key Problem: each service needs a new infrastructure

Smart Parking

Traffic Management

Ideally...

1) ONE Infrastructure

2) Ease of Maintenance

3) We don't want to add new devices to cars

Electronic Toll Transponders

Some states are making it mandatory

Opportunities

One infrastructure for many smart services

Challenge: Interference

Wireless query

One car responds

Wireless query

All cars respond

Multiple Transponders Respond

Time

Structure of the Signal

Time-Domain

Freq-Domain

$$\delta(f-fc)+S(f-fc)$$

Structure of the Signal

We are able to count despite interference

trequency

How can we decode transponders despite Interference?

Decoding Transponders

Decoding Transponders

Decode by Combining Multiple Responses

We are able to decode despite interference

Implementation and Evaluation

- Built a prototype of our sensors
- Evaluated in four streets
- Standard E-ZPass transponders on the cars

Accuracy of Counting Transponders

Speed Detection Accuracy

Our system detects the speed to within 8%

Accuracy of Localizing Transponders

Accuracy of Localizing Transponders

Enough accuracy to detect occupied versus available parking spots

Power Consumption

E-toll transponder

Leveraging existing low-power E-toll transponders

enso

Average power

Solar panel

Low-power and self-sustaining

Make Homes Health-Aware

Make the Home Health-Aware

A WiFi-like device that sits at home and monitors health

- Gait and mobility
- Elderly Falls
- Breathing and Heart Rate
- Sleep

Emerald

Emerald monitors health with radio signals

Fall Detection

Activities

1. Sleep

Activities

2. Kitchen Activities

Activities

3. Socialization vs. withdrawal

BREATH MONITORING

For more information, contact dk@mit.edu

Summary

Exciting wireless technologies:

- Millimeter Wave High-Speed Networks
- Untethered Virtual Reality
- Smart Cities
- Smart Homes that are Health Aware

Professor Dina Katabi dk@mit.edu