Transforming Healthcare Using Machine Learning

John Guttag Dugald C. Jackson Professor Professor MIT EECS

Conflict of Interest Disclosure

I am Chief Scientific Officer at Health[at]Scale Technologies, Inc. and have a financial interest in the company.

HEALTH [at] **SCALE**

Why Healthcare Needs to be Transformed

Examples of Waste In U.S. (Billions USD)

- Ineffective Rx
- Over treatment
- Avoidable ED visits
- Inpatient complications
- Chronic disease progression

Opportunity to improve care provided to people. And save billions!

Machine Learning Can Help

By matching

Each patient

to the Right treatment

by the Right provider

> at the Right time

Traditional Programming Data Output Program Computation Output

(Supervised) Machine Learning

Some Different Kinds of Machine Learning

Supervised Learning

Source: Wikipedia

Semi-Supervised Learning

Unsupervised Learning

Reinforcement Learning

January 2018

Some Classes of Machine Learning Algorithms

Logistic Regression

Source: https://medium.com/@haydar_ai/learning-data-science-day-11-support-vector-machine-8ef06da91bfc

Support Vector Machines

Source: http://www.mdpi.com

Convolutional Neural Networks

Source: www.frontiersin.org/articles/10.3389/fncom.2015.00036/full

Recurrent Neural Networks

January 2018

How Might ML Be Useful in Healthcare

Better decisions about care

E.g., should patient *A* receive an ICD? When and how can we intervene to avoid an ED visit for patient *B*?

Benchmarking and improving institutions and providers

E.g., is hospital *C* over- or underperforming relative to peer institutions?

Optimizing resource utilization

E.g., should patient *D* have a procedure done at hospital *E* or F?

Improvements at the level of a patient

Improvements at the level of a hospital

Improvements at the level of a network

Impact of ML on Healthcare

Lots of slick marketing from industry Lots of publications from academia

But, over all, disappointingly little change in

Delivery of care Business models

MD Anderson Taps IBM Watson for Mission to End Cancer

Going Up Against a Deadly Disease

A commission A com

Matthew Herper, FORBES STAFF I cover science and medicine, and believe this is biology's century.

Forbes 2017

FEB 19, 2017 @ 03:48 PM 142,249 VIEWS 😣 EDITOR'S PICK

Intelligence In Medicine

Why? Because it's hard Ithcare is different

MD Anderson Benches IBM Watson In Setback For Artificial

Because ML for healthcare is different

The Typical "Big Data" Problem

Too Large	Too Fast	Too Complex	Too Uncertain
Volume	Velocity	Variety	Veracity
Data at rest	Data in motion	Data in many forms	Data in doubt
Terabytes to exabytes of existing data to process	Streaming data, milliseconds to seconds to respond	Structured, unstructured, text and multimedia	Uncertainty due to data inconsistency and incompleteness, ambiguities, latency, deception and model approximations

Source: IBM

Not That Large

500 Petabytes

(1 petabyte = 1 million gigabytes) Total amount of all the healthcare data existing in the world in 2012¹

15 Exabytes

(1 petabyte = 1 billion gigabytes) Total amount of data managed by a large web company alone in 2014²

Source: BGR

January 2018

¹ IDC Report; ² Cirrus Insight

Never Enough Obviously Relevant Data

Filter by patient history

Example

Filter 1: How many patients have a craniotomy? Filter 2: How many of these have intentional hypothermia? Filter 3: How many of these have a post operative infection? Filter 4: How many of these received an antibiotic?

Trying to find groups of patients with similar demographic, H&P findings, labs etc. can make big data small really quickly

Source: Health at Scale Corporation

Similar story for institutions

January 2018

Not the Typical "Big Data" Problem

Source: IBM

Not That Fast

Getting data about current patient can be urgent

But getting data about large numbers of patients is rarely urgent

For almost all medical decisions "real time" is minutes, not micro seconds

Not the Typical "Big Data" Problem

But Not Impossible

Unprecedented amount of relevant data

Medical records Clinical trial data Billing data Ambulatory data

Economic pressure for reduced cost and better outcomes

Payers Consumers

Improved technology

Hardware ML methods General purpose Specialized to healthcare

January 2018

Better outcomes and reduced cost for post-acute care Billing data

Full electronic health records

Precision Steerage

Skilled nursing facilities (SNFs) increasingly important

25% of patients readmitted to hospital within 30 days 2/3 of these preventable

Choosing skilled nursing facilities (SNFs) that are optimal for *individuals*

re Dredictions for CNICs

Built a predictive model using years of Medicare data

HEALTH[at]SCALE Personalized Prediction™ 	Please enter patient and procedure information below	Explo
	291: Heart failure & shock w MCC	Change Lo
🎔 Risk	Type of Admission	onange 20
(h) 105	Elective	Skilled Nu
	Patient Age 82 Years	PEARL AT
(\$) Costs Explore	Patient Sex	MANORCA SALMON
S Network	Male Female	AVAMERE
	Patient Race	FORT VAN
	White -	
🕞 Logout	Patient Comorbidities	BEAVERT
	Congestive heart failure	FRONTIEF
		PROVIDEN
		WEST HIL REHABILI
		AVAMERE

Change Location Preferences 🗐					
Skilled Nursing Facility	Predicted 30- Day Mortality	E Predicted 30-Day Hospitalization	↓≟ Predicted ↓≟ Charges	Bed ↓↑ Count	CMS Ratin
PEARL AT KRUSE WAY, THE	4%	16%	\$16,600	45	3
MANORCARE HEALTH SERVICES SALMON CREEK	- 4%	25%	\$18,800	120	4
AVAMERE REHABILITATION OF HILLSBORO	5%	18%	\$21,300	100	5
FORT VANCOUVER POST ACUTE	5%	20%	\$10,500	92	ŧ
AVAMERE REHABILITATION OF BEAVERTON	5%	21%	\$18,400	104	3
FRONTIER REHAB & EXTENDED CARE	6%	16%	\$19,100	140	E
PROVIDENCE BENEDICTINE NURSING CENTER	6%	18%	\$14,100	93	1
WEST HILLS HEALTH & REHABILITATION CENTER	6%	20%	\$19,000	180	5
AVAMERE COURT AT KEIZER	7%	15%	\$17,800	69	3

Source: Health[at]Scale

Precision Steerage

4% 16% \$16,600 45 3 4% 25% \$18,800 120 4 5% 18% \$21,300 100 5 5% 20% \$10,500 92 5 5% 21% \$18,400 104 3 6% 16% \$19,100 140 5 6% 18% \$14,100 93 1 6% 20% \$19,000 180 5 7% 15% \$17,800 69 3	Predicted 30- Day Mortality	Predicted 30-Day Hospitalization	Le Predicted Le Charges	Bed ↓↑ Count	CMS 11 Rating
4% 25% \$18,800 120 4 5% 18% \$21,300 100 5 5% 20% \$10,500 92 5 5% 21% \$18,400 104 3 6% 16% \$19,100 140 5 6% 18% \$14,100 93 1 6% 20% \$19,000 180 5 7% 15% \$17,800 69 3	4%	16%	\$16,600	45	3
5% 18% \$21,300 100 5 5% 20% \$10,500 92 5 5% 21% \$18,400 104 3 6% 16% \$19,100 140 5 6% 18% \$14,100 93 1 6% 20% \$19,000 180 5	4%	25%	\$18,800	120	4
5% 20% \$10,500 92 5 5% 21% \$18,400 104 3 6% 16% \$19,100 140 5 6% 18% \$14,100 93 1 6% 20% \$19,000 180 5	5%	18%	\$21,300	100	5
5% 21% \$18,400 104 3 6% 16% \$19,100 140 5 6% 18% \$14,100 93 1 6% 20% \$19,000 180 5 7% 15% \$17,800 69 3	5%	20%	\$10,500	92	5
6% 16% \$19,100 140 5 6% 18% \$14,100 93 1 6% 20% \$19,000 180 5 7% 15% \$17,800 69 3	5%	21%	\$18,400	104	3
6% 18% \$14,100 93 1 6% 20% \$19,000 180 5 7% 15% \$17,800 60 3	6%	16%	\$19,100	140	5
6% 20% \$19,000 180 5 7% 15% \$17,800 60 3	6%	18%	\$14,100	93	1
7% 15% \$17,800 60 3	6%	20%	\$19,000	180	5
1% 15% \$11,000 05 5	7%	15%	\$17,800	69	3

Impact of Choosing the Right SNF

		Rate of 30-Day Mortality and Hospital Readmission (N=3)	Rate of 30-Day Mortality and Hospital Readmission (N=5)
	Patients Admitted to Top-N SNFs (Number of Patients in Group)	22.4% (604,428)	22.8% (713,549)
National	Patients Admitted to Non-Top-N SNFs (Number of Patients in Group)	28.6% (393,034)	29.9% (283,913)
	Comparison P-Value	<0.001	<0.001

Improvements in mortality and readmission at the population level after factoring in competition for resources, patient preferences and capacities of SNFs

National		Volume Change (5%)	Volume Change (10%)	Volume Change (25%)
	SNFs within 5 Miles	-6%	-7%	-9%
	SNFs within 10 Miles	-8%	-10%	-12%
	SNFs within 25 Miles	-11%	-13%	-15%

Results on Medicare Fee-For-Service Population

Healthcare Associated Infections in the U.S.

Not Just in U.S.

U.S.: 4.8% EU: 7.1%

Low and middle income countries: 15.5%

Source: WHO

Clostridium Difficile

C. diff was established as the major cause of antibioticassociated diarrhea in 1978

Early association with clindamycin→ but since then many other antibiotics have been implicated including cephalosporins, fluoroquinolones Early 2000s, NAP1/B1/027 strain emerged– more virulent, increased toxin production

500,000 infections each year in U.S.; 30,000 deaths 66% healthcare associated

About 25% will recur

C. diff an anaerobic, spore-forming, gram-positive bacillus

Risk Factors

Some are well established

Antibiotic exposure Healthcare exposure Prior CDI Proton pump inhibitors Advanced age

Our focus

Discovery of other factors that increase susceptibility Discovery of sources of infections Colonization Environmental exposure Transmission paths

Transmitted by Environment

Highly transmissible by fecal-oral route

Patients can serve as a reservoir for environmental contamination

The room looks clean, but ...

Source: Wikipedia

Transmitted by People

Has been cultured from hospital rooms, items in the room, and the hands, clothing, stethoscopes of healthcare workers

Clothing

January 2018

Role of Asymptomatically Colonized

An open question

Estimates in literature all over the place "Extremely rare" to "50% of all cases"
Colonized patients do shed spores
Spores last a long time in environment
Recent studies suggest role is important

One Way to Think About Things

Hospital system of (mostly) mobile "devices"

Medical equipment and furniture Patients Caregivers

Properties of devices can be changed by coming into contact with other devices

Patient becomes infected, x-ray table acquires spores, ...

Learn

Properties of individual devices How individual and classes of devices influence each other

Who is at highest risk for CDI and for being colonized?

What is the contribution of *asymptomatic carriage* to CDI?

What are the most important *routes of transmission* over space *and* time?

Risk Prediction for CDI

Traditionally, takes the form of evaluating existing hypotheses, i.e., regression model incorporating antibiotics, PPIs, comorbidities, etc.

This approach pre-specifies the variables that matter Heavy emphasis on susceptibility, **exposure largely ignored** Generally these models predict risk at time of admission to the hospital, however, *we know that risk evolves over time*

Our Approach

- Leverages all available information to identify factors that confer risk Fine-grained inference of exposure
- Allows for evolution of risk (and relative importance of risk factors) over time

One size does not fit all!

Models need to be institution specific

What is most important at MGH may or may not be most important elsewhere

Developed a method for building institution-specific models

a generalizable approach

rather than

a generalizable model

Tested it by building separate models for two institutions, MGH and Univ. of Michigan Hospital

MGH

MGH

Risk Factor Rank	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
1	Admission to	Chlorhexidine	Chlorhexidine	Chlorhexidine	Allopurinol	Allopurinol
	Medicine (0.39)	(0.36)	(0.32)	(0.30)	(0.26)	(0.26)
2	Any history of	Vancomycin	Allopurinol	Cefepime	Furosemide	Chlorhexidine
	CDI (0.34)	(0.29)	(0.28)	(0.27)	(0.27)	(0.21)
3	History of CDI within prior year (0.34)	Admission to medicine service (0.29)	Vancomycin (0.28)	Allopurinol (0.26)	Omeprazole (0.25)	Omeprazole (0.20)
4	Chlorhexidine	Cefepime	Admission to	Vancomycin	Chlorhexidine	Furosemide
	(0.32)	(0.26)	Medicine (0.27)	(0.24)	(0.24)	(0.20)
5	Allopurinol (0.30)	Omeprazole (0.26)	Cefepime (0.26)	Omeprazole (0.24)	Vancomycin (0.22)	History of CDI within prior year (0.19)

Some Institutional Differences

Demographic	UM	MGH
Female	54%	49%
Median age	56	62
CDI	1.1%	0.83%
CDI in past year	2.4%	1.55

Features

UM d=4,836 MGH d=1,837

Applying Network Theory to Identify Hidden Spreaders

Current model is mostly about susceptibility→ what about exposure?

In order to understand exposure, we need to investigate the network and paths

Problem: Estimating Influence of Neighbors

Identify latent influencers based on

Intrinsic characteristics of node Characteristics and labels of neighbors Infected or not

Maximum likelihood estimation in presence of latent variables

Multiple definitions of "neighbor"

Shared spaces over time (proxy for furniture) Shared care givers

Assumptions Underlying Work

Not infected does not imply not contagious Colonized individuals shed spores

Two factors contributing to infection state:

- Susceptibility: captured through observed individual characteristics
- Exposure: captured through contact with **unobserved latent spreaders**

Network structure is observable

An Over-simplified View

Predict the spreader state (z) of individuals based upon their own characteristics

Predict who will become infected (y) based on their characteristics and the spreader states of their neighbors

$$p(\mathbf{z}_i, \theta_i, \eta_i | \mathcal{D}, \mathbf{u}, \mathbf{w}) = \frac{p(\mathbf{z}_i | \mathbf{u}, X_{n(i)}) p(\theta_i | \mathbf{z}_i) p(\eta_i | \theta_i) p(y_i | \mathbf{x}_i, \eta_i, \mathbf{w})}{\int_{\theta} \sum_{\mathbf{z}} \sum_{\eta} p(\mathbf{z}_i | \mathbf{u}, X_{n(i)}) p(\theta_i | \mathbf{z}_i) p(\eta_i | \theta_i) p(y_i | \mathbf{x}_i, \eta_i, \mathbf{w})}$$

Some Early Qualitative Results

Fine grained analysis of neighbor relation improves predictive power

Shared rooms Concurrent occupancy Sequential occupancy Shared nurses

Strong hypotheses about specific sources of infection

Not just prevalence in a ward, but which patients/care providers

Wrapping Up

Computer science is poised to revolutionize healthcare

Not new therapies A better job of utilizing existing therapies

Requires using multiple technologies

Machine learning Sensing Signal processing Computer vision Etc.

Requires a transition path

Accounting for economic factors Collaboration with practitioners Collaboration with industry

