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Decision Making is Hard

Why?

Accurately assessing risk is challenging.

Multiple sources of uncertainty.

Gathering information requires resource expenditures.

Decision Fatigue

Decision quality declines under repetitive decision making.

Reasoning over many options causes stress.

We are better at relative rather than absolute comparisons.

All of which leads to ...
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Information Planning
Bayesian Experimental Design

UQ

VoIINFR

P A

Prior Knowledge

{p (X|history, context) , R (X, task)}

Uncertainty Quantification

p (X|Y = yd∗, . . .)→ p (R|Y = yd∗, . . .)

F
{∫

p (R|X) p (X|Y = yd∗, . . .) dX

}
< ε

Execute Task

Inference

p (X|Y = yd∗, . . .) ∝
p (Y = yd∗|X)p (X| . . .)

VoI Analysis

d∗ = argmax
d
{I (X;Yd|d = 1) , . . . ,

I (X;Yd|d = D)}
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Begin at the End

Simple Wagers
sometimes not so simple

Assume the wager amount is paid prior to the coin flip.

b = amount wagered w = win multiple p = success probability

Reward

r =

{
wb− b ; success

−b ; failure

E {r} = (pw − 1) b

Winning...in expectation

E {r} > 0→
{
p > 1

w

w > 1−p
p + 1

So, the win multiple must be greater than the odds against winning (plus
one to account for the prepaid wager amount).
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Begin at the End

Simple Wagers
sometimes not so simple

You have saved up $1, 000, 000, I mean U100, 000, 000. It is your life savings. With the
previous analysis in hand, you’re confident risking it all on a favorable wager.

b = 100, 000, 000 U w = 21 p = 1/20

Careful Analysis

X

w = 21 >
19

1
+ 1 =

(
1− p
p

+ 1

)

X

E {r} = (pw − 1) b = U5, 000, 000

Not bad, a 5% return!

Sharing the Wealth

Out of generosity, you share your

analysis and convince 19 of your closest

friends to make the same wager with

their life savings.

There is a greater than 33% chance that not only will you lose all of your
money, but ALL of your friends will lose their money, as well! /

J. Fisher (SLI) 25JAN2019 8 / 29



Begin at the End

Simple Wagers
sometimes not so simple

You have saved up $1, 000, 000, I mean U100, 000, 000. It is your life savings. With the
previous analysis in hand, you’re confident risking it all on a favorable wager.

b = 100, 000, 000 U w = 21 p = 1/20

Careful Analysis

X

w = 21 >
19

1
+ 1 =

(
1− p
p

+ 1

)

X

E {r} = (pw − 1) b = U5, 000, 000

Not bad, a 5% return!

Sharing the Wealth

Out of generosity, you share your

analysis and convince 19 of your closest

friends to make the same wager with

their life savings.

There is a greater than 33% chance that not only will you lose all of your
money, but ALL of your friends will lose their money, as well! /

J. Fisher (SLI) 25JAN2019 8 / 29



Begin at the End

Simple Wagers
sometimes not so simple

You have saved up $1, 000, 000, I mean U100, 000, 000. It is your life savings. With the
previous analysis in hand, you’re confident risking it all on a favorable wager.

b = 100, 000, 000 U w = 21 p = 1/20

Careful Analysis

X w = 21 >
19

1
+ 1 =

(
1− p
p

+ 1

)

X E {r} = (pw − 1) b = U5, 000, 000

Not bad, a 5% return!

Sharing the Wealth

Out of generosity, you share your

analysis and convince 19 of your closest

friends to make the same wager with

their life savings.

There is a greater than 33% chance that not only will you lose all of your
money, but ALL of your friends will lose their money, as well! /

J. Fisher (SLI) 25JAN2019 8 / 29



Begin at the End

Simple Wagers
sometimes not so simple

You have saved up $1, 000, 000, I mean U100, 000, 000. It is your life savings. With the
previous analysis in hand, you’re confident risking it all on a favorable wager.

b = 100, 000, 000 U w = 21 p = 1/20

Careful Analysis

X w = 21 >
19

1
+ 1 =

(
1− p
p

+ 1

)

X E {r} = (pw − 1) b = U5, 000, 000

Not bad, a 5% return!

Sharing the Wealth

Out of generosity, you share your

analysis and convince 19 of your closest

friends to make the same wager with

their life savings.

There is a greater than 33% chance that not only will you lose all of your
money, but ALL of your friends will lose their money, as well! /

J. Fisher (SLI) 25JAN2019 8 / 29



Begin at the End

Simple Wagers
sometimes not so simple

You have saved up $1, 000, 000, I mean U100, 000, 000. It is your life savings. With the
previous analysis in hand, you’re confident risking it all on a favorable wager.

b = 100, 000, 000 U w = 21 p = 1/20

Careful Analysis

X w = 21 >
19

1
+ 1 =

(
1− p
p

+ 1

)

X E {r} = (pw − 1) b = U5, 000, 000

Not bad, a 5% return!

Sharing the Wealth

Out of generosity, you share your

analysis and convince 19 of your closest

friends to make the same wager with

their life savings.

There is a greater than 33% chance that not only will you lose all of your
money, but ALL of your friends will lose their money, as well! /

J. Fisher (SLI) 25JAN2019 8 / 29



Begin at the End

Simple Wagers
the distribution of risk/rewards matters too!

-1 20

10
8

0

0.2

0.4

0.6

0.8

1 For a one-time wager, the
expected reward is not useful.

The distribution of risk is a better
descriptor.
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Begin at the End

Simple Wagers
the distribution of risk/rewards matters too!

Why not amortize over multiple trials?

Even at 170 trials the probability of a loss is great than 50%.

20 trials 170 trials
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1

At this point, our best “bet” is to improve our odds.

Information becomes an important and quantifiable factor.
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Actionable Information

Actionable Information
Why are we collecting data?

...information is actionable if it is prescriptive of actions that can be
taken to either improve upon the state of uncertainty for a particular
task or allow one to accurately evaluate the cost of ancillary decisions
related to the task.

-original source in dispute

The perfect is the enemy of the good.
-Voltaire, 1764 (though, he probably said it in French)
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Actionable Information

Information and Risk
Kelly [1956]

B =
∑

i bi is the total sum invested in different outcomes.

bi = wager i wi = win multiple i pi = success probability i

Reward
ri = wibi −B

E {r} =
∑

i

piri =
∑

i

piwibi −B

Some observations

If all piwi = 1 then the game is fair,
E {r} = 0 for any choice of bi.

If any piwi > 1 then allocating
everying to the maxi piwi maximizes
E {r}.

Maximizing the expected reward over repeated trials → Gamblers ruin.

Maximizing the rate of reward over repeated trials avoids ruin, but
requires information to succeed.
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Actionable Information

Information and Risk
Repeated trials and rates Kelly [1956]

Xn is the outcome of the nth investment. It is random with distribution p.

b(X) = allocations r(X) = b(X)w(X) relative wealth increase

Growth Rate

rn =

n∏

k=1

rk(Xk)

.
= 2nW (b,p)

W (b, p) = E (log r(x))

=
∑

i

pi log biwi

Optimal Rates & Information

bi = pi optimizes W (b, p) (growth rate
is zero for a fair game).

But p an estimate, information yields
an edge.

With data p (X)→ p (X|Y ).

W (p (X|Y ) , b (X|Y )) = I (X;Y )
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Representations: More than Answers Multi-Modal Data Fusion

The Blind Men and the Elephant
The measurement is rarely the answer

The Blind Men and the Elephant
John Godfrey Saxe (1816-1887)

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind

...six stanzas in which
each demonstrates that they have
questionable judgement...a

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

a
minor paraphrase

They end up with this...

J. Fisher (SLI) 25JAN2019 16 / 29



Representations: More than Answers Multi-Modal Data Fusion

The Blind Men and the Elephant
The measurement is rarely the answer

The Blind Men and the Elephant
John Godfrey Saxe (1816-1887)

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind

...six stanzas in which
each demonstrates that they have
questionable judgement...a

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

a
minor paraphrase

They end up with this...

J. Fisher (SLI) 25JAN2019 16 / 29



Representations: More than Answers Multi-Modal Data Fusion

Multi-modal Data Fusion
LiDAR/EO/Semantic Fusion Example [Cabezas et al., 2015]

gn zn π

sn

an

vn

φg

φs

φa

kn

tn

ln

on

inm

pnm

Np

Nv

Nl

No Nφ

M

Nc

geo-tagged text

LiDAR

EO/WAMI Photo Reconstruction

Semantic Reconstruction

How do we mediate the
transition from data to rea-
soning?

Interesting models generally have complex structure described by a graph.
Measurements (shaded nodes) depend on different aspects of the latent representation
(unshaded nodes). Reasoning often involves functions of a subset of the latent variables.
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Representation

Quantify uncertainty.

Explain the sensor physics.

Accommodate new sensor physics.

Robust to missing data.

Support multiple reasoning tasks.

Facilitate Value of Information
reasoning.

...
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XY

Latent variables encode a struc-
tured probalistic representation
of the “world” where reasoning
tasks are a function of X.

Observation nodes
represent physical
measurements.

Edge encodes physics of the
forward model: p (Y |X).

Interesting models generally have complex structure described by a graph.
Measurements (shaded nodes) depend on different aspects of the latent representation
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Value of Information & Diminishing Returns

Information Gathering
Quality and Cost of Information Sources

cost
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expensive, thorough

J. Rockford

$99/day+expenses,
effective

J. Clouseau

free?, inept

M. Smart

real potential for interna-
tional incidents, inept

M.Smart + A. 99

may still cause explosions,
gets results
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Value of Information & Diminishing Returns

Information Measures and Experimental Design

1 A broad class of information measures - f -divergences – are
fundamentally linked to bounds on risk. [Bartlett et al., 2003, Nguyen et al.,

2009]

f -divergences: expectations of convex functions of the likelihood ratio.
f -divergence → φ-risk → bound on excess risk

2 Submodularity – as applied to information measures – is a key enabler.
[Krause and Guestrin, 2005, Williams et al., 2007a, Papachristoudis and Fisher III,

2012]

off-line and on-line performance bounds
guarantees on tractable planning methods
incorporation of inhomogenous resource constraints

3 Submodular properties are intimately related to the structure of
graphical models. [Williams et al., 2007a]

local properties (and computations) yield global guarantees

J. Fisher (SLI) 25JAN2019 20 / 29



Value of Information & Diminishing Returns Submodularity

Submodularity
Diminishing Returns

For a set V , a function f : 2V → R is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ∀A,B ⊆ V.

The set increment function is defined as

ρS(j) , f(S ∪ j)− f(S) j ∈ V, S ⊆ V

A real-valued function is submodular if

ρA(j) ≥ ρB(j) ∀A ⊆ B ⊆ V and j /∈ B

i.e., j has greater incremental value relative to A than to any B
containing A.

Monotonicity: A real-valued f is monotone if

f(A) ≤ f(B) ;∀A ⊆ B or ρS(j) ≥ 0 ;∀j ∈ V, S ⊆ V

J. Fisher (SLI) 25JAN2019 21 / 29



Value of Information & Diminishing Returns Submodularity

Submodularity
Graphical Explanation

V

V

V

V

+

V

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ∀A,B ⊆ Vf(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ∀A,B ⊆ V

ρA(C) ≥ ρB(C) ∀A ⊆ B ⊆ V and C * BρA(C) ≥ ρB(C) ∀A ⊆ B ⊆ V and C * B

ρS(C) , f(S ∪ C)− f(S) C, S ⊆ VρS(C) , f(S ∪ C)− f(S) C, S ⊆ V

A

B
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Value of Information & Diminishing Returns Submodularity

Efficient Information Planning

Tractable greedy selection achieves near-optimal performance.

Williams et al. [2007b] reduces complexity

of information gathering formulated as a

Markov Decision Process.

Williams et al. [2007a] the optimal informa-

tion gathering rate is no greater than twice

the greedy information gathering rate.

O([Ns2
Ns ]NMN )→ O(NN3

s )
I(X;ZGN)
I(X;Z∗N)

≥ 1
2 ∀N

Ns: number of sensing actions, N : planning horizon, M : measurement simulation cost.
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Case Study: Oil & Gas Production

Case Study: Oil & Gas Production
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Well modeling and inference

Goal:
- Develop a model and inference
algorithm for an off-shore well system.
- Plan a sequence of well tests to
estimate unknown properties of the
reservoir and each well.

1. Model
- Each well has unknown productivity
index (PI), gas-to-oil ratio (GOR),
water-cut (WC). ≈ 400 nuisance
variables. ≈ 1000 pressure and flow rate
measurements.
- Graphical models are used to illustrate
structure useful for inference. Gaussian
processes are learned to efficiently model
multi-phase flow.

Chen, Pacheco, Fisher III (CSAIL SLI) Uncertainty quantification in a deep-sea... Feb 26, 2018 1 / 3



Well modeling and inference

2. Posterior distribution
- Use MCMC to sample from the
posterior distribution p(θ |y).
- Slice sampler has faster mixing; the
required extra computation can be
parallelized.

3. Model checking
- Empirically check that measurements
from the real system are within the
predictive quantiles.

4. Planning
- Taking a measurement is costly and
time-consuming, so we would like to
select informative measurements.

Chen, Pacheco, Fisher III (CSAIL SLI) Uncertainty quantification in a deep-sea... Feb 26, 2018 2 / 3



Well modeling and inference

Planning
- We maximize mutual information
between θ and Y:
I(Y,θ) =

∫
p(y) logp(y)dy−s

p(θ)p(y|θ) logp(y|θ)dθ dy.

- Draw samples (θ (i),y(i)) from p(θ ,Y),
then:

First term

≈ 1
Ny

Ny

∑
i=1

logp(y(i))

≈ 1
Ny

Ny

∑
i=1

log
1

Nθ

Nθ

∑
k=1

p(y(i)|θ (k))

Second term

≈ 1
Nθ

Nθ

∑
i=1

H(Y|θ (i))

Application: Planning well tests
Well-separator routings can be
configured in each test segment. A
feasible set of routings are provided by
domain experts.

Results - planned vs. expert:

Chen, Pacheco, Fisher III (CSAIL SLI) Uncertainty quantification in a deep-sea... Feb 26, 2018 3 / 3



Case Study: Learning to Count

Case Study: Learning to Count
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Application: Estimating Electrification Status

C. Dean / S. Lee / J. Fisher SLI Group Meeting February 26, 2018 1 / 3



Hierarchical Beta Models with Latent Structure
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Case Study: Kayonza District in Rwanda
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Case Study: Learning to Count Geospatial Bayesian Inference

Thank you
Questions?
Comments?
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