Semiconductor Quantum Technologies for Communications and Computing

Dirk Englund MIT EECS Department | RLE and MTL

2017 MIT Research and Development Conference November 15, 2017

Miniaturizing the Colossus

Thermionic vacuum tubes in Colossus Mark 2 (1940s) (Bletchley Park Museum)

First Transistor: 1947 **1950s** First Si transistor (TI)

First IC - 1958 - J. Kilby, TI. See also Robert Noyce - Fairchild S.C.

Today: Intel <u>Phi</u> with ~ 5 Billion transistors

Moore's law meets the atomic scale

Intel

The End of Moore's Law ?

-

~

Nature "computes" using quantum mechanics

Harris et al Nature Photonics 11 (2017)

Quantum Technologies

Quantum Networks

Repeater-less QKD growing up

Satellite-based photon entanglement distributed over 1,200 kilometers J. Yin et al (J-W Pan group, USTC), Science (2017)

High-dimensional QKD field trial in Boston area

MIT-Lincoln Labs 43-km field test: > 1 Mbit/sec; > 20 Mbit/s for low loss

Catherine Lee et al, arXiv:1611.01139 (2016) [under review]

Security Proofs: J. Mower et al, PRA 87 (2013); Z. Zhang et al], PRL **112** (2014)

.. with finite-key correction: C. Lee et al], Qu. Inf. Proc 14 (2015)

.. with decoy state protection against photon splitting side channel attack: D. Bunandar et al, PRA 91 (2015) Lab Demo: C. Lee et al, PRA **90**, 062331 (2014)

On-chip detectors: Ge and SNSPD Entangled photon sources (sFWM) Dense Wavelength Division Multiplexing

- >100x cost reduction
- >10³ volume reduction
- However, some modification needed

PIC for Polarization-Based QKD

Darius Bunandar

See also:

P. Sibson et al (O'Brien and Thompson groups, Bristol), Optica 4 2 (2017)

C. Ma al (J. Poon group), Optica 3 11 (2016)

Y. Ding et al (Oxenloewe group, DTU), npj Quantum Information (2017)

D Bunandar, Anthony Lentine, C Lee, H Cai, C Long, N Boynton, N Martinez, C DeRose, C Chen, M Grein, D Trotter, A Starbuck, A Pomerene, S Hamilton, F N. C. Wong, R Camacho, P Davids, J Urayama, and D Englund, ArXiv:708.00434 [quant-ph]; under review (2017)

Plii

Field Test with Polarization Feedback

Transmission: 1_z , 0_z , 1_x ; detection on all 4 states (X and Z)

D Bunandar, Anthony Lentine, C Lee, H Cai, C Long, N Boynton, N Martinez, C DeRose, C Chen, M Grein, D Trotter, A Starbuck, A Pomerene, S Hamilton, F N. C. Wong, R Camacho, P Davids, J Urayama, and D Englund, ArXiv:708.00434 [quant-ph]; under review (2017)

Results

Laser decoy protocol: μ, μ_{DCI} , μ_{DC2} =0.12, 0.012, 0.003

Clock @ 650 MHz

Uses only 3 state transmission w/ finite-key analysis*

Composable security: tight security parameter of $\epsilon_{sec} = 10^{-10}$

*A. Mizutani et al, New J. of Phys. **17** (2015) D. Bunandar et al, ArXiv:708.00434

48-channel transmitter for time-bin encoded QKD

Next: wavelength-division multiplexing Adapted from OPSIS foundry

48 Traveling Wave
ModulatorsInput Grating
CouplersOutput Grating
CouplersPhase
ModulatorsMultiplexing

Collaboration with Michael Hochberg and Tom Baer Jones

515

QKD records..

Recent record secure key generation rates (in bits per second), plotted against the experimental quantum channel loss (in dB), of the different QKD protocols: prepare-and-measure BB84 QKD (Comandar et al., 2014), high-dimensional QKD (HD-QKD) (Zhong et al., 2015), measurement-device-independent QKD (MDI-QKD) (Comandar et al., 2016), continuous variable (CV)/GG02 QKD (Jouguet et al., 2013), six-state BBM92 QKD (Treiber et al., 2009), coherent-one-way (COW) QKD (Korzh et al., 2014). The record highest secret key generation rate (HD-QKD, 2016) is our most recent experimental result (Lee et al., 2016).

Quantum repeater networks

Quantum networks with diamond NV centers

Plii

Long-Range Entanglement with Solid State Qubits

Sorry, Einstein. Quantum Study Suggests 'Spooky Action' Is Real.

By JOHN MARKOFF OCT. 21, 2015

New York Times

- Remote spin entanglement demonstrated for 2 Nitrogen Vacancy (NV) centers in diamond at 1.3 km:
 - B. Hensen et al, Nature 526, 682-686 (2015)

"Fixing" the NV

Intensity (a.u.)

600 650 700 750 800 Intensity (a.u.) NV in cavity 700 800 600 650 700 750 600 800 λ(nm)

NV diamond spectrum (5K)

Phonon side-band ©

Zero-Phonon Line (ZPL) 😳

Outstanding challenges:

- Spectral stability
- Photon interfaces
- Device yield

L. Li, T. Schroeder, E. Chen, et al, NCOMM 6, 6173 (2015) See also: Harvard, Vienna, Saarland, Delft, HP, Basel

Early NV work: Wrachtrup(U. Stuttgart), Jelezko (Ulm) , Lukin (Harvard), Awschalom (UCSB), Manson (ANU), ..

Cavity increases spin-photon scattering

Scattering rate increases with $\mathrm{F}_{\mathrm{P}} \propto \mathrm{Q/V}_{\mathrm{mode}}$

[1] E. M. Purcell, Phys. Rev. 69, 681 (1946)

Weak-coupling regime, $g < \kappa, \gamma$

Diamond PhC Patterning

Q < 10,000 NV: λ_{ZPL} ~ 10s GHz

Aligned emitters ✓ Chip Size: 100x100 µm X # yielding cavities>10²

L. Li et al Sci Rep 5 (2015)

Q > 8,000 NV: λ_{ZPL} < 5 GHz

Aligned emitters ✓ Chip Size: 4x4 mm ✓ # yielding cavities>10³

M. Schukraft et al, APL Photonics 1, 020801 (2016)

T. Schroeder et al, Material Optics Express 7, 5 (2017)

I. Bayn et al, Applied Physics Letters 105, 21 (2014) Q > 14,000 NV: λ_{ZPL} < 1 GHz

Aligned emitters ✓ Chip Size: 4x4 mm ✓ # yielding cavities>10⁴

S. Mouradian, N. Wan et al, APL **111** (2017)

Increasing the device yield

Aligned NV-cavity systems with near-perfect yield.

Plii

Multi-NV sites for error correction

E.C. necessary for scalable networks or computing.

E.C. demonstrated with 3 data qubits¹, but General EC requires at least 9 qubits \Rightarrow Need NV arrays \rightarrow implantation²

Implanting a few NVs at the nanometer scale

D Scarabelli, M. Trusheim, et al (Wind), Nano Letters 16 (2016); see also I. Bayn et al, Nano Letters **15** (2015) Sub-diffraction limited imaging technique: E. H. Chen et al, Nano Letters 13, 2073 (2013) See also Wrachtrup group/U. Stuttgart: 2 coupled nearby NVs Collaboration with Shalom Wind, Columbia U.

Quantum Repeater / Mod. Quantum Computer Architecture

M. Pant et al, arXiv:1704.07292 (2017)

Programmable circuits in silicon photonics

88 MZIs, 26 input modes, 26 output modes, 176 phase shifters

- N. Harris et al, Nature Photonics **11** (2017)
- Y. Shen*, N. C. Harris*, et al, Nature Photonics 11 (2017)
- N. Harris et al, Nanophotonics 5 (3) (2016)

See also D.A.B.M Miller, "Sorting out Light", Science **347** (2017)

Switch array in action

Strong laser input

Perspective

General-purpose quantum computers will require lots of qubits; scheme for generation large NV cluster states in perhaps <1 ms by percolation:

M. Pant et al, arXiv:1704.07292 (2017)

Photonic cluster states for computing and repeaters?

w/ Saikat Guha, BBN: Mihir Pant et al, arXiv:1701.03775v1 (2017); M. Pant et al, PRA 95 (2017);

Entanglement distribution network protocol:

Mihir Pant et al, arXiv:1701.03775v1 (2017)

Graphene single-photon detectors?

Evan D. Walsh et al, [K.C. Fong, BBN], ArXiv:1703.09736 (2017)

Ultra-strong cavity-QED coupling:

H. Choi et al, PRL 118 (2017) [see also S. Hu and S. Weiss, ACS Photonics (2016)]

Summary

1. Repeaterless quantum key distribution: high-speed HD-QKD & photonic

3. Outlook: blueprint for modular quantum computers

Acknowledgements

- MIT Quantum Photonics Group :
- Graduate Students: Catherine Lee, Nick Harris, Darius Bunandar, Mihir Pant, Matt Trusheim, Sara Mouradian, Noel Wan, Michael Walsh, Hyongrak Choi
- Postdocs: Tim Schroeder (-> Niels Bohr Institute, Copenhagen)
- Collaborators:
- MIT: Prof. Jeffrey Shapiro, Dr. Franco Wong, Dr. Z. Zhang; Prof. Karl Berggren, Prof. Seth Lloyd
- Harvard: Prof. Mikhail Lukin, Prof. Marko Loncar
- Raytheon BBN: Dr Saikat Gua, Dr. Hari Krovi, K.C. Fong
- U. Delaware: M. Hochberg, T. Baehr-Jones
- Rome Air Force Laboratory: Dr. Paul Alsing, Michael Fanto
- Lincoln Laboratory: Scott Hamilton, Danielle Braje, Ben Dixon, Matt Grein, Ryan Murphy
- Sandia National Laboratory: J Urayama, N Boynton, N Martinez, C DeRose, A Lentine, P Davids, R Camacho, E. Edward S. Bielejec

