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Robots & Autonomous Systems

reasons for adoption: faster, better, safer, cheaper

gr
ou

nd

transportation miningdomestic supply chain logistics

air
sp

ac
e

an
d 

m
or

e 
…

disaster response precision agriculture

exploration science

infrastructure inspection

environmental monitoring

2



Mission: to develop theoretical understanding and 
practical algorithms to bridge the gap between human and 
robot perception for autonomous navigation

Sensing Perception 
Autonomy and  
Robot Kinetics 

• signal processing  
(e.g., 2D computer vision) 

• state estimation  
(e.g., localization & mapping) 

• probabilistic inference  
(e.g., high-level understanding) 

• machine learning  
(e.g., object detection)



Example 1: Visual-Inertial Navigation

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, TRO’17 (best paper award)

Localization in GPS-denied scenarios
• localize robot (and map unknown 

environment) using camera and IMU



Example 2: Lidar-based Mapping

DARPA Subterranean Challenge, in collaboration with JPL 



Example 3: Object Detection, Pose Estimation
• Object pose estimation in point clouds:  

• Registration problem: find rigid transformation (position, 
rotation) that aligns two point clouds

• Related problems:  
• Image-based object 

pose estimation 
• Image segmentation



Outline

• Intro: Autonomy and Perception 

• Grand Challenges 

• Recent Results from SPARK
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Perception Success… and its failures

Tesla Autopilot

Skydio R1 Drone
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Key Challenges
– Certifiable performance: how to establish rigorous 

performance guarantees on correctness and 
robustness of perception systems? 
• Example: can we design a perception system 

with lower failure rate than an expert human?

– Efficient real-time performance: can we design 
algorithms that execute in real-time on embedded 
platforms with tight resource constraints (power, 
size, weight, cost)? 
• Example: drones, small sats, self-driving cars

– Perception for cognitive robotics: can we design 
perception algorithms that replicate advanced 
reasoning in humans to support complex tasks? 
• Example: human-level understanding of the 

environment for collaborative robotics
16
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• Recent Results from SPARK
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Robust Perception
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Estimate

Measurements/data

Residual

Standard 
estimation:

Issue: some measurements are outliers
Localization & Mapping Object detection



Robust Perception
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Outlier-robust estimation:

Theorem (Inapproximability): 
Outlier rejection is inapproximable.  

In the worst case, there is no 
polynomial-time algorithm that can 
compute a near-optimal solution.

Tzoumas, Antonante, Carlone. Outlier-robust spatial perception: Hardness, 
general-purpose algorithms, and guarantees. IROS, 2019. 

Perception problems

Worst-case 
problems

• Rejects outliers, computes least squares solution of inliers



Perception problems

Worst-case 
problems

A New Perspective: Certifiable Algorithms
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Certifiably robust algorithms: efficient algorithms that can 
assess their performance in each problem instance: 
• perform well and certify correctness in common instances 
• detect and declare failure in worst case problems (the once 

which are impossible to solve in polynomial time)



A New Perspective: Certifiable Algorithms
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Theorem (Certification of robustness): If the solution Z* of the convex 
relaxation has rank 1, then Z* can be factored into Z* = xTx, and x is the 

optimal solution of the original (combinatorial, non-convex) problem.

Yang and Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019.
Yang and Carlone. A quaternion-based certifiably optimal solution to the Wahba problem with outliers. ICCV, 2019. 

Robust perception 
(non-convex, combinatorial)

Convex relaxation 
(convex, easy to solve)

certificate



95.44% outliers 97.37% outliers 96.87% outliers

80% outliers

Stanford Bunny

– Key contribution: the first efficient and certifiably robust algorithm for 
object pose estimation in liar scans (able to tolerate 99% outliers)

*TEASER 
(proposed) is 
best approach

*second best is 
Branch-&-Bound 
(exponential time)

Yang and Carlone. A Polynomial-time Solution for Robust 
Registration with Extreme Outlier Rates. RSS 2019.
Yang and Carlone. A quaternion-based certifiably optimal 
solution to the Wahba problem with outliers. ICCV, 2019. 

Certifiable Perception Algorithms



Certifiable Perception Algorithms

Lidar-based Object Localization

Proposed RANSAC Proposed Baseline

Real-time Localization and Mapping
collaboration with 
JPL & Caltech
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Camera-based Object Localization

Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection. Arxiv, 2019. 
Lajoie, Hu, Beltrame, Carlone, Modeling Perceptual Aliasing in SLAM via Discrete Continuous Graphical Models, RAL 2019. 
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Model complexity



Beyond Geometry

Autonomy requires the robot to obtain a high-level understanding 
of the environment (geometry, objects & semantics, …)



Releasing Kimera
Real-time metric-semantic visual-inertial SLAM

Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time 
metric-semantic localization and mapping. Arxiv, 2019.  



Releasing Kimera

Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time 
metric-semantic localization and mapping. Arxiv, 2019.  



Back to Robustness…
solving 2D semantic segmentation failures:  

2D semantic segmentation is doomed to fail…



solving 2D semantic segmentation failures:  
2D semantic segmentation is doomed to fail…

Back to Robustness…



Back to Robustness…
solving 3D reconstruction failures
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Efficient Real-time Perception
algorithm-and-hardware design visual attention for robotics

• Key contribution (in collaboration 
with Karaman and Sze): the Navion 
Chip for visual-inertial navigation 
• uses 3 orders of magnitude less 

energy with respect to a state-of-the-
art implementation on a workstation 

• ensures a comparable accuracy

robot co-design
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Conclusion

34

– Perception is a key ingredient of autonomy 
– Safety critical applications require robust perception 
– Certifiable algorithms provide a practical  

approach to get provably robust performance 
– High-level understanding enables autonomy 

applications and can further enhance robustness

Thank you!



Teaching Perception and Autonomy 
6.141/16.405j - Robotics:  

Science And Systems
16.S398 - Visual Navigation  
for Autonomous Vehicles

• Geometric control 
• 3D vision 
• Coding: ROS 
and C++ 

• Optimization 
• Hands-on labs

• Intro to robotics 
• Coding: ROS 
and python 

• Hands-on labs


