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Virtual discovery

Increasing computing power

Faster algorithms

More data
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Software is already matching (or beating) humans in 
performance and speed

Driverless cars, AlphaGo, virtual assistants, speech & 
image recognition and generation, …

Is it time for materials design?



Computational spectrum - virtuous cycle
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First
Principles

Machine learning
Parametrization

Out-of-the-box
No/Little fitting

High-throughput

- but -
As good as model
Sometimes costly

Fast
Uncanny performance

Leverage large data

- but -
As good as training data

Data ownership

There is essentially a continuum of higher parametrization and statistical learning connecting first 
principles (theory-based simulations) to black-box statistical learning over experiments.

Discovery



Research background

1. High-throughput screening

2. Deep inverse design

3. Novel zeolite catalysts

4. Ongoing Research
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Virtual discovery approach
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Organic light emitting diodes
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Semiconductors made of molecules that can convert electricity into light.
• High end displays, potentially lighting.
• Lightweight, flexible, transparent, high contrast, low power 



Other OLED modes
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New TADF molecules can be efficient, 
cheap and potentially make blue.

We can calculate what makes them 
good with simulations

Uncharted territory

Well-known historical avenues

New physics from 2012-2014

Adachi et al . Nature 2012



Making combinatorial libraries

2/5/19 9

3

7

5

1 2
4

6

8

9

N N

N
X

X

X

N
X

XX

X X

Inspired by lab chemistry
Reactants pulled from patents and literature
Connection modes that limit combinatorial 

explosion (cross-coupling chemistry)



Automation and calibration
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Gaussian 
process

Experimental
properties

Simulated properties 
PLUS graph

Automated calculation engine:
No operator intervention once set up

Automatic promotion to better methods

Automated calibration engine:
Machine-learning to improve theory

In house and literature data
Automatically updated
Improved predictions



NN regression – bypassing DFT
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Molecule

DFT-level properties

Duvenaud et al. arXiv:1509.09292, https://github.com/HIPS/neural-fingerprint



Charting chemical space
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Adachi leads
This work leads
This work exp.

Better TADF



Experimental validation
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• Web-based collaborative tool

• Lead candidates synthesized

• Predictions confirmed

• Matched state of the art



HTVS in other areas: redox flow battery
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Redox flow batteries:
◦ Energy and power are independent
◦ Potentially low toxicity, lower safety risks
◦ Large scale, Efficient, Low cost
◦ What materials?

Screening
◦ Redox active, right potential
◦ Soluble
◦ Stable
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HTVS in other areas: redox flow battery
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(ACA)

Fe(CN)6
4-

Fe(CN)6
3-

Negative Electrolyte 
Reservoir

Positive Electrolyte 
Reservoir

Pump

Graphite Flow Field
Porous Carbon Electrodes
Cation-selective Membrane

2K+

Pump

Load

Fe(CN)6
3-

Fe(CN)6
4-

2e- 2e-

Re-ACA

ACA

Quinone Alloxazine

V (V) 1.20 1.13

E Eff (%) 84 74

C Eff (%) 99.0 99.7

Cap Ret (%) 99.90 99.98

P Dens (W/cm2) 0.45
(0.6A/cm2)

0.35
(0.6A/cm2)

C Dens (Ah/L) 27 54

Lin, K. et al. Nature Energy 1, 16102 (2015)



DEEP INVERSE 
DESIGN
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Inverse design
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?

Progress in predicting performance given candidate

Can we generate candidate based on design targets?

NNO



Deep generative models
Unsupervised learning:  Learning from data that has not been labeled, 
classified or categorized. Find a common denominator in the data.

In a generative model, we then use that commonality to generate novel 
realistic synthetic samples.
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Deep molecular autoencoder
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Projects discrete graph molecule onto
a continuous differentiable space

Decodes any point in continuous space back 
out as a discrete molecular graph
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Non-linear avigation
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The space is very much not 
linear. Most molecules are in 
an annulus far from the 
mean.

SLERP (Spherical 
interpolation) allows taking 
much more sensible steps



Dreaming OLEDs
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Trained on HTVS library and patented OLED
No bias, just generation
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Semisupervised Molecular VAE

2/5/19 23Gomez-Bombarelli et al. ACS Central Science 2018, 4 (2), 268–276

The latent representation now encodes mapping to properties.

Structure-property relationships over continuous space



Zeolite design
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Zeolites
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Nanoporous materials composed of 
(alumino)silicates

3D Network of SiO4 tetrahedra.

Industrial use as catalysts, molecular sieves
Highly regular, selective pores
Very robust



Zeolite conundrum
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Baerlocher, C.  et al. Atlas of Zeolite Framework Types. Elsevier, 2007. 

Pophale, R. et al. Phys. Chem. Chem. Phys. 13 (27), 12407-12412 (2011).

In theory there are millions of ways of connecting tetrahedra into a regular crystal
Computer enumeration + thermodynamics calculations estimates 100,000’s

But only 235 zeolite unique frameworks have been realized since the 1750’s

The International Zeolite Association keeps a database of known frameworks

Why are some observe and some not?
Can we identify how to make new ones?



Zeolite synthesis - interconversions
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Roth, W. et al.  Chem. Rev. 114, 4807-4837 (2014)

Marler, B. and Gies, H.  Eur. J. Mineral. 24, 405-428 (2012)

Topotactic transformationsAssembly – Disassembly – Organization – Reassembly

More subtle directed approaches can make one-to-one conversions without organics



Connectivity similarity

2/5/19 28Xie, T. and Grossman, J. C. Phys. Rev. Lett. 120, 145301 (2018).

Crystal Graph: keep track of connectivity only. 
Atoms are connected also through PBC

Similar to molecular formulas, ignore distance, track 
only connectivity

Isomorphism: Two graphs are isomorphic if they 
differ just by a relabeling of the nodes
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Similarity of the graphs is connected to synthetic transformations



Conclusions and 
outlook
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Blurring lines between ML and simulation
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N
N

N

N N

N

Parametrization of a physics model is a 
learning problem. Even building a 
physics model may be a learning 
problem

Machine learning over matter is an issue 
of representation: how to input a system 
in a way that  captures known physics 
and chemistry

Simulations and machine learning are 
two sides of the same coin. 



ML and simulation – blurred lines
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Method development and representation learning

Data-driven discovery and optimization.

Continuous typing force fields
Automatic coarse graining of 

atomistic simulation

Artificial peptide design Data driven discovery of zeolite 
catalysts Small molecule binder Organic electronics

Basis sets

H3C

H3C
CH3

OH3C

c1 c2 c3 c4 c5 c6 !1

OH3C

H2C

H3C
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