

Big and Streaming Video Data in the Smart Factory

Brian W. Anthony, PhD banthony@mit.edu

Associate Director, MIT.nano Director, MEng in Advanced Manufacturing and Design Program

Machine Vision in the Factory

C1-Casepark (15-31 05 187 01/00/2507) (25w

© 2019 MI

What is Machine Vision?

Extracting Measurements from Images for Decision Making

Industrial Machine Vision

Motion Analysis

Motion Analysis

Gigabyte Video

Analyzed Video – Human-in-the-Loop Analysis Results for Human Interpretation © 2019 MIT

Cameras and Images in the Factory

Laser Weld Melt Pool 10000 fps 1/100000 sec 512x512 mono Data Rate: 4x data rate of full color 4K Data Rate: 4600x data rate of HD Netflix

Laser cutting alum. 10000 fps 1/50000 sec

Wire Fed Plasma Welding 5000 fps 1/1000000 sec

Milling 2000 fps 1/10000 sec **Milling** 6000 fps 1/50000 sec

Binding Machine 2500 fps 1/10000 sec

Pill Packing 500 fps 1/4000 sec Massachusetts Institute of Technology

Sewing 6000 fps 1/20000 sec

Spray Coating 4000 fps 1/100000 sec

Ink Print 250000 fps 1/100000025966

Automated Fault Detection

Anthony BW, Chua F. "Computationally Efficient Optimal Video Comparison for Machine Monitoring and Process Control". J Manuf Sci Eng. 2017 Aug 24;139(10):101007.

Automated Product Testing

Anthony BW, Chua F. "*Computationally Efficient Optimal Video Comparison for Machine Monitoring and Process Control*". Journal Manufacturing Science Engineering. 2017 Aug 24;139(10):101007.

Video Instrument

Video Instrument

Characteristics and Needs

- General use, no Specific Models
 - paper, fluids, molten metals, and other amorphous and flexible objects
- Usable by Non-computer Scientist on the Factory Floor
 - easy to understand and modify
 - easy to configure and produce results
- Minimal Training Data
 - A single training example? The "golden master."
- Computation Easily Scaled to Match Fast Production Rate
 - 1000's of frames / second
 - Efficient Way to reduce Data Size

Data Size

					MBytes/ sec	Relative to	Relative to HD Netflix
	x	Y	FPS	byte		C0101 4K	Streaming
4k at 24 fps	4096	2160	24	1	212	0.3	373
4k at 24 fps	4096	2160	24	3	637	1.0	1118
weld	512	512	10000	1	2621	4.1	4599
laser cut	768	384	10000	1	2949	4.6	5174
wire fed	1024	576	5000	1	2949	4.6	5174
mill	512	512	6000	1	1573	2.5	2759
mill	768	672	2000	1	1032	1.6	1811
binding	1024	250	2500	1	001	1 /	1581
machine	1024	302	2500	I	901	1.4	1301
blister	512	512	500	1	131	0.2	230
sewing	768	656	6000	1	3023	4.7	5303
beverage	1024	1024	2000	3	6291	9.9	11038
4k at 1000 fps	4096	2160	1000	3	26542	41.7	46565

INTUITION FOR APPROACH

Video Alignment Path

Video Alignment Path (VAP) Compans Engine VAP Q 21 3 4 С 3 2 4 Q_4 Q_1 Q_2 Q_3 Q_4 Q in C C_1 C_2 **C**₂ C_4 **C**₃ 3 2 5 1 4 Q_2 Q Q_1 Q_4 Q_4 Q_3 C_1 C_2 C_3 C_4 C_2 Cw 5 2 3 Δ

APPROACH

Finding VAP

 Find the optimal VAP of the query video, Q, through / in the target video, C, (distorting time and space) subject to natural constraints.

^{© 2019} B.W. Anthony, MIT

Query Frame Correlations

Natural Constraints

- Find the best match of the template video, Q, through the target video, C subject to alignment **constraints**.
- Find the minimum cost path through the elemental hypervolume of distances subject to path constraints.

Endpoints

Temporal Continuity Bi-Temporal Causality Spatial Continuity Spatial Drift

Natural Constraints

The **end frames constraint** ensures that the first frame of the query is matched to the first frame of the test video, and likewise for the last frames.

Natural Constraints

The **spatial continuity constraint** limits the VAP stay within a bounded spatial radius over a short period of time. The **temporal continuity constraint** limits local temporal compression or stretching of the time axes.

Natural Constraints

The bi-temporal causality constraint

enforces the assumption that both Q and C are time-ordered sequential segments; this constraint also ensures a finite solution set.

Endpoints
Temporal Continuity
Bi-Temporal Causality
Spatial Continuity
Spatial Drift

The **spatial drift or blur constraint** enforces the assumption of a fast frame exposure, relative to observed motion. A frame contains an image of a scene at an instant in time.

Natural Constraints

If a frame of Q must be replicated to match to two or more frames of C, then the frame-to-frame matching must occur at the same spatial location in the replicated frame of C. If frame exposures are long compared to the time scales of captured motion, then blurring or spatial drift would make physical sense, and this constraint would be relaxed

ACCELERATED PROCESSING

Eigenframes

Eigenframes and Coefficients

Query Frame Filterbank

Eigen-Frame Filterbank

RESULTS

Camera

Automated Monitoring: Product Lifetime Test, Monitoring a synthetic heart valve

Input

Output

SHOW VIDEOS

Automated Monitoring: Product Lifetime Test, Monitoring a synthetic heart valve

Input

Automated Monitoring: Production Faults, Monitoring a Diaper Packaging Line

Input

Output

Automated Monitoring: Production Faults, <u>Monitoring a Diaper Packaging Line</u>

MIT

New direction...

VIDEO SEARCH

Detection, Alignment Information

thony, MIT

Example: Video Event Detection

Frame Index

© 2019 B.W. F. Athony, MIT

0.2

Example: Karate

Input

Dubai World Cup: The richest race day returns with \$35 million prize purse

By Ben Church, CNN

() Updated 1250 GMT (2050 HKT) March 27, 2019

\$7.2M for two minutes' work -- the world's richest race

Bollywood superstar Deepika Padukone offers glimpse of upcoming...

Serena Williams withdraws from Miami Open through injury

Dubai World Cup returns with record \$35M purse 01:12 https://edition.cnn.com/2019/03/27/sport/dubai-world-cup-richest-horse-racing-winning-post-uae-spt-intl/index.html

- The first practical application of high-speed photography was Eadweard Muybridge's 1878 investigation into whether horses' feet were actually all off the ground at once during a gallop.
- The first photograph of a supersonic flying bullet was taken by the Austrian physicist Peter Salcher in Rijeka in 1886.

Example: Horse Racing

Input

Big and Streaming Video Data in the Smart Factory

Prost

and

Brian W. Anthony, PhD banthony@mit.edu

Thank you

Associate Director, MIT.nano