Harnessing High Temperature Materials for Extraction and Processing

Prof. Antoine Allanore

Department of Materials Science & Engineering

Massachusetts Institute of Technology, USA

MIT ILP R&D Conference, November 15th, 2017 Cambridge, MA

Materials for 9 billion people?

fastest growth is in minerals and metals

Metals processing: steel

typical plant capacity: 114 tonnes each 1/2 hour

Metals processing: steel

cost < \$0.32 per kg (less than retail price of flour)

Metals processing: steel

the liquid state and high temperature are ubiquitous

Metals extraction involves melts

Copper - 20 Mt per year 3600 kWh / t from concentrate to copper cathodes conversion costs: \$320/t

Aluminium - 60 Mt per year electrolysis conversion costs: \$1000/t

Research Group

Sustainable Materials Processing

Existing processes

process basic principle

incremental engineering

markets and society

Research Group

Sustainable Materials Processing

Sulfides electrolysis

electrolytic decomposition of metal sulfides

(gas)

(-)

electrolyte

elemental sulfur as anodic product

several grams of liquid Cu (99.9%)

9

anodic product

100 µm

Sulfides electrolysis

productivity 6x the one of aluminium electrolysis

- electrical energy consumption around 3000kWh/t (-20%)
- sulfur as by-product with selective recovery of As, Se, Te
- principles transferable to Mo, Ag, Au, Zn, Co, Ni …

Molten rare-earth oxides electrolysis

rare-earth oxides at 2200°C

- high selectivity for La vs Y (99 vs 1)
- compatible with rare-earth oxide concentrates
- enables to produce refractory alloys (e.g. Ir-La)
- production of oxygen as by-product

Research Group

Sustainable Materials Processing

Multi-physics of aluminium casting for more recycling

Direct-chill casting of aluminium slabs

 demonstration of the role of 2-phase flow in DC casting

 novel, cost-effective method to improve alloy elements distribution

 100 tonnes of Al products, rolled into +10 miles of sheet

 20% increase in productivity at the plant

Research Group

Sustainable Materials Processing

Existing processes

process basic principle

incremental engineering

markets and society

higher productivity

how about energy efficiency improvement?

Heat management : steel

Blast furnace, H=30m, Ø= 15m

Heat management : steel

Blast furnace, H=30m, Ø= 15m

Heat management : glass

Glass melting, 12m x 20m

image: Sonilas Benelux

Heat management : glass

Heat management : high T !

• Temperature in excess of 1000°C

Heat flux less than few kW/m²

Surfaces greater than 20,000 sq ft

Is it possible to harvest or manage such heat?

thermoelectric at temperature greater than 1000°C for low heat fluxes?

Zhao, Rinzler and Allanore, ECS Journal of Solid State Science and Technology, 6 (3) N3010-N3016 (2017)

Thermoelectricity for low heat fluxes

ΔT	thermal conductivity W/m/K	thickness material	heat flux		
400	2	1 cm	80 kW/m ²	e.g. crystalline Bi ₂ Te ₃ 225°C few cm thick?	
400	2	16 cm	5 kW/m²		

Industrial reality: temperature in excess of 1000°C, few kW/m² call for different metrics and materials

Zhao, Rinzler and Allanore, ECS Journal of Solid State Science and Technology, 6 (3) N3010-N3016 (2017)

Thermoelectricity for low heat fluxes

Dollar per Watt

2

Molten semiconductor?

	Figure of Merit	Thermal conductivity	Melting point	Cost \$/m ³
Ni_3S_2	na	na	800°C	54,000
SnS	na	na	882°C	65,000
PbS	na	na	1120°C	13,500
Cu_2S	1 @1130°C	0.8 to 1.4	1130°C	27,400
FeS	na	na	1200°C	<5,000
FeO	na	na	1400°C	<3,000

How do we know the range of temperature for semiconductivity? Can we demonstrate power generation at T>1000°C? What are the actual material performance limitations?

Materials science for high T?

Handbook of phase diagrams...

Sharma and Chang, Bulletin of Alloy Phase Diagram, 1986

Materials science for high T?

- Need for transport properties: Handbook again?
 - density
 - viscosity
 - electronic properties (conductivity, Seebeck, mobility)
 - thermal conductivity:
 - electronic thermal conduction?
 - radiation? ... optical properties

most useful database are trade secrets... and unique for each field (!)

Acknowledgements

Device tested with SnS

Device tested with SnS

- successful power generation at T>1000°C
- very stable power
- >4h operation
- reusable

Zhao, Rinzler and Allanore, ECS Journal of Solid State Science and Technology, 6 (3) N3010-N3016 (2017)

Device and material

Results in agreement with known electronic properties

Materials limitations?

Good cyclability - what limits power conversion?

Thermal conductivity?

CONVECTION?need density, viscosity data

- RADIATIVE? Refractive
 - index n

 Absorption coefficient a

Seeing the melt

SnS (I)

graphite plate

physical properties of molten sulfides (from 150 to 2000°C)

study of molten refractory oxides above 2100°C

Process heat management?

conventional refractory

QH

- Q_H is fixed by max ΔT of refractory
 T_H limited by T_L location and ability to remove Q_C
- higher apparent thermal conductivity
 ability to be controlled by electricity
 can enable higher T_H, fast Q_H removal

Summary

- High temperature melts represent the ultimate state of condensed matter, pertinent to the entire metal supply chain (including oxidation products!)
- Existing predictive and experimental framework for properties is quickly evolving
- Novel media for heat, electrical or mass transfer in high temperature conditions can be designed and scaled-up promptly
- Scalability and implementation will be possible if it increases productivity of underlying process flowdiagram

Prof. Antoine Allanore Department of Materials Science & Engineering Massachusetts Institute of Technology, USA <u>allanore@mit.edu</u>

Acknowledgements

Materials processing

realm of liquid state, high temperature, plasma, ...

What is the state of the art in 'high temperature' materials science?

Thermal conductivity?

Liquid semiconductors

Certain compounds maintain semi-conductivity upon melting...described by a 'pseudo-gap'

Mott's formulas for amorphous SC

Conductivity $\sigma = \sigma_{min} e^{\frac{-(E_0 - \gamma T)}{kT}}$

thermopower $\alpha = -\frac{k}{e}(\frac{E_0}{kT} - \frac{\gamma}{k} + 1)$

J. E. Enderby and A. C. Barnes (1990), Rep. Prog. Phys., 53, pp. 85–179

V. A. Alekseev, A. A. Andreev, and M. V Sadovskil, (1980), Sov. Phys. Usp., 23, no. 9, pp. 551–575

D. L. Price, (1990), Annu. Rev. Phys. Cher

P. W. Anderson, (1958), Phys. Rev. 109, pp.1492-1505,

Molten sulfide electrolyte #2 Na2S-ZnS

Allanore et al., Presentation at the 11th Workshop on Reactive Metal Processing February 20, 2016, Cambridge, MIT

Silver: estimated concentration of 135 g/L

After 115 minutes of electrolysis, Ag "dendrites' were found near the cathode

Gold: estimated concentration 278 g/L

Sthe
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

International Society Meeting _{x1,0}August 28, 2017, Providence (RI)