
Software Economics
Gain financial, managerial, and technical control of complex software portfolios

silverthread

Dan Sturtevant, PhD
CEO, Silverthread Inc.
dan@silverthreadinc.com
M: 781.223.8200

mailto:dan@silverthreadinc.com

2 3 June 2019Copyright © Silverthread 2014-2019

PROPRIETARY

Finite key resources are spent developing software systems.
Some projects go well while others face significant risk

Pr
oj

ec
t A

Pr
oj

ec
t M

On time

Start

Delaye
d

At risk

Failed

Attention People Money

• 50% of software
dollars are wasted

• 90% of software
projects are
delayed or worse

3 3 June 2019Copyright © Silverthread 2014-2019

PROPRIETARY

Which means many more capabilities could be
developed with the same resources

Pr
og

ra
m

 A

Pr
og

ra
m

 Z

On time

Start

Delaye
d

At risk

Failed

Attention People Money

4 3 June 2019Copyright © Silverthread 2014-2019

PROPRIETARY

Layer
Compromised

API
Circumvented

Cyclicality
Module Too

Big

Based on 15 years of MIT research, we help enterprises
assess and improve technical health & business outcomes

Healthy CodebaseUnhealthy Codebase

goal

Layered

API

Modular

Hierarchical
dependence

Developer
productivity

20
Features/Year

Developer time
fixing bugs

20%
Developer

productivity

8
Features/Year

Developer time
fixing bugs

69%

5 3 June 2019Copyright © Silverthread 2014-2019

PROPRIETARY

We helped one Air Force customer achieve a >20x ROI by
making wiser financial choices and driving refactoring

Major issues,
Total rewrite
best option

$Billions
allocated to
recapitalize

System
challenged,
and fixed

Team reports
3X

productivity,
very rapid

ROI

REPAIR
EXAMPLE:
System Y

REBUILD
EXAMPLE:
System Z

100 major
systems

HEALTHY
EXAMPLE:
System X

Team had
built and

grown great
system

Team
rewarded

with future
work

6 3 June 2019Copyright © Silverthread 2014-2019

PROPRIETARY

How to get started: Proof of Concept Ideas

CodeMRI® Portfolio

Step 2:
• Portfolio analysis across your

domain for full visibility

Step 1:
• Fully automated diagnostic deep

dive into a few strategic systems

Edit Preferences | Give Feedback

Indigo 17.11.29 Analysis

Indigo 17.11.29 is an unhealthy program that requires attention. Descriptive Statistics

? Primary language: C++
? Number of files: 33,769
? Lines of code (LOC): 9,935,938
? Average file size (LOC): 294
? Diagnostic confidence: Moderate

View File List

? Show details for: Overall System � Core 1 �

? Directory:

Technical Health

Design Quality Code Quality

? Actual ? Threshold ? Actual ? Threshold

? Number of critical Cores: 1 0 0 ! ? Files with high complexity: 1722 50 0 !

? Number of emerging Cores: 7 0 -- ! ? Files with problematic complexity: 5478 25 50 !

? Files potentially affected by single change: 1976 ## 185 ! ? Complex files vs. scanned codebase: 16% ## 0% !

Economic Outcomes

Cost of Ownership Project Quality and Risk

? Predicted ? Benchmark ? Predicted ? Benchmark

? Cost to produce 1000 LOC: $30,597 ## $8,643 ! ? Days to develop 1000 LOC: 45 14 14 !

? Money wasted per additional $1M invested: $766,886 ## $507,740 ! ? Bug to feature ratio (labor hours): 42% 0 6% !

? Number of bug LOC added / exposed per year: 1,155,388 ## 137,431 !

? Number of bug LOC released per year: 784,641 ## 106,606 !

Legend

 Unlikely to have negative effects on business outcomes; should be closely monitored.The "technical health" of a codebase predicts both the Cost of Ownership and Quality and Risk associated with a

particular program. Technical health is comprised of both Code Quality and Design Quality measures. Significant negative effects on business outcomes.

CodeMRI Health Diagnostics

*

Indigo 17.11.29 contains 1 critical Core and 7 emerging Cores — tangles of files intricately
dependent on each other. Core #1 contains 1823 files, and has the biggest impact on your
program’s cost, schedule, and performance. It also contains 1722 files with high complexity
scores. Complex files are problematic because they reduce reliability, safety, and
dramatically increase the likelihood of defects. Talk with engineering about a refactoring
initiative for this area of the codebase.

The cost of ownership for this codebase if no refactoring is done. Agility measures how much time it takes a person to write code in this codebase. Risk measures how many bugs may need
addressing. The data below assumes no refactoring is done.

ℹ Based on the Technical Health of codebase Indigo 17.11.29, we predict the following outcomes:

Legend

Impacted business outcomes as a result of technical health.
Significantly impacted outcomes as a result of technical health.

ℹ

❌

Design Quality of a codebase is based on 3 impactful characteristics: size, quantity, and composition of each Core (files knotted
together).

Code Quality is measured by the number of logical paths through a file (reported as complexity).

 33769 files match

CodeMRI®
Diagnostics

CodeMRI®
Care

silverthread

Dan Sturtevant, PhD
CEO

dan@silverthreadinc.com

Sunny Ahn
VP of Business
Development
sunny@silverthreadinc.com

Kent Summers
VP of Sales &
Marketing
kent@silverthreadinc.com

mailto:dan@silverthreadinc.com
mailto:sunny@silverthreadinc.com
mailto:sunny@silverthreadinc.com

8 3 June 2019Copyright © Silverthread 2014-2019

PROPRIETARY

Silverthread provides benefits at multiple levels

Executive
Leadership

• Decide what to continue with maintenance, refactor, rewrite,
accept, or reject

• Know where to focus finite effort and resources

• Increase agility, security, and quality across the organization

Project
Leadership

Technology
Leadership

• Estimate development cost and schedule more effectively

• Construct ROI-based business cases for improvement

• Control system architecture to ensure it does not degrade

• Define design rules and audit the code’s adherence in real-time

• Manage refactoring, cloud transformation, migration to an open
platform, etc.

• Build a codebase that developers understand and can
confidently modify

CodeMRI® Portfolio

CodeMRI® Diagnostics

CodeMRI® Care

Edit Preferences | Give Feedback

Indigo 17.11.29 Analysis

Indigo 17.11.29 is an unhealthy program that requires attention. Descriptive Statistics

? Primary language: C++
? Number of files: 33,769
? Lines of code (LOC): 9,935,938
? Average file size (LOC): 294
? Diagnostic confidence: Moderate

View File List

? Show details for: Overall System � Core 1 �

? Directory:

Technical Health

Design Quality Code Quality

? Actual ? Threshold ? Actual ? Threshold

? Number of critical Cores: 1 0 0 ! ? Files with high complexity: 1722 50 0 !

? Number of emerging Cores: 7 0 -- ! ? Files with problematic complexity: 5478 25 50 !

? Files potentially affected by single change: 1976 ## 185 ! ? Complex files vs. scanned codebase: 16% ## 0% !

Economic Outcomes

Cost of Ownership Project Quality and Risk

? Predicted ? Benchmark ? Predicted ? Benchmark

? Cost to produce 1000 LOC: $30,597 ## $8,643 ! ? Days to develop 1000 LOC: 45 14 14 !

? Money wasted per additional $1M invested: $766,886 ## $507,740 ! ? Bug to feature ratio (labor hours): 42% 0 6% !

? Number of bug LOC added / exposed per year: 1,155,388 ## 137,431 !

? Number of bug LOC released per year: 784,641 ## 106,606 !

Legend

 Unlikely to have negative effects on business outcomes; should be closely monitored.The "technical health" of a codebase predicts both the Cost of Ownership and Quality and Risk associated with a

particular program. Technical health is comprised of both Code Quality and Design Quality measures. Significant negative effects on business outcomes.

CodeMRI Health Diagnostics

*

Indigo 17.11.29 contains 1 critical Core and 7 emerging Cores — tangles of files intricately
dependent on each other. Core #1 contains 1823 files, and has the biggest impact on your
program’s cost, schedule, and performance. It also contains 1722 files with high complexity
scores. Complex files are problematic because they reduce reliability, safety, and
dramatically increase the likelihood of defects. Talk with engineering about a refactoring
initiative for this area of the codebase.

The cost of ownership for this codebase if no refactoring is done. Agility measures how much time it takes a person to write code in this codebase. Risk measures how many bugs may need
addressing. The data below assumes no refactoring is done.

ℹ Based on the Technical Health of codebase Indigo 17.11.29, we predict the following outcomes:

Legend

Impacted business outcomes as a result of technical health.
Significantly impacted outcomes as a result of technical health.

ℹ

❌

Design Quality of a codebase is based on 3 impactful characteristics: size, quantity, and composition of each Core (files knotted
together).

Code Quality is measured by the number of logical paths through a file (reported as complexity).

 33769 files match

