February 15, 2024 10:30 am - 12:00 pm

10:30 AM Welcome & Introduction

10:35 AM What Can the Race in Generative AI Models Teach Us About Technology Strategy?
Pierre Azoulay
International Programs Professor of Management, MIT Sloan School of Management

Pierre Azoulay is the International Programs Professor of Management at the MIT Sloan School of Management, and a Research Associate at the National Bureau of Economic Research.

His current research focuses on empirical studies of the supply of biomedical innovators, particularly at the interface of academia and the biopharmaceutical industry. He also is interested in the topic of academic entrepreneurship, having recently concluded a major study of the antecedents and consequences of academic patenting. In the past, he has investigated the impact of superstar researchers on the research productivity of their colleagues, and the outsourcing strategies of pharmaceutical firms, in particular the role played by contract research organizations in the clinical trials process.

At MIT Sloan, he teaches courses on competitive strategy and innovation strategy to the EMBA students and Sloan Fellows, as well as a PhD class on the economics of ideas, innovation, and entrepreneurship.

He holds a Diplôme d’Études Supérieures de Gestion from the Institut National des Télécommunications, an MA from Michigan State University, and a PhD in management from MIT.
Olivier de Weck was born in Switzerland and holds degrees in industrial engineering from ETH Zurich (1993) and aerospace systems engineering from MIT (2001). Before joining MIT he was a liaison engineer and later engineering program manager on the F/A-18 aircraft program at McDonnell Douglas (1993-1997).

Prof. de Weck is a leader in systems engineering research. He focuses on how complex man-made systems such as aircraft, spacecraft, automobiles, printers, and critical infrastructures are designed and how they evolve over time. His main emphasis is on strategic properties that have the potential to maximize lifecycle value (a.k.a the “ilities”). Since 2001 his group has developed novel quantitative methods and tools that explicitly consider manufacturability, flexibility, commonality, and sustainability among other characteristics. Significant results include the Adaptive Weighted Sum (AWS) method for resolving tradeoffs amongst multiple objectives, Time-Expanded Decision Networks (TDN), the Delta-Design Structure Matrix (DDSM) for technology infusion analysis and the SpaceNet and CityNet simulation environment. These methods have impacted complex systems in space exploration (NASA, JPL), oil, and gas exploration (BP) as well as in sophisticated electro-mechanical products (e.g. Xerox, Pratt & Whitney, DARPA). Prof. de Weck’s teaching emphasizes excellence, innovation, and bridging of theory and practice.

He is an associate fellow of AIAA, a fellow of INCOSE, and serves as associate editor for the Journal of Spacecraft and Rockets and the Journal of Mechanical Design. He won the 2006 Frank E. Perkins Award for Excellence in Graduate Advising, a 2007 AIAA Outstanding Service Award, the 2008 and 2011 best paper awards from the journal Systems Engineering and the 2010 Capers and Marion MacDonald Award for Excellence in Mentoring and Advising. From 2008-2011 he served as associate head of the Engineering Systems Division at MIT. Since early 2011 he serves as executive director of the new MIT Production in the Innovation Economy (PIE) initiative.