Day 1: September 20 (Tuesday)

8:00 AM Registration with Light Breakfast
Welcome and Introduction
John Roberts
Executive Director (Interim), MIT Corporate Relations

John Roberts has been Executive Director of MIT Corporate Relations (Interim) since February 2022. He obtained his Ph.D. in organic chemistry at MIT and returned to the university after a 20-year career in the pharmaceutical industry, joining the MIT Industrial Liaison Program (ILP) in 2013. Prior to his return, John worked at small, medium, and large companies, holding positions that allowed him to exploit his passions in synthetic chemistry, project leadership, and alliance management while growing his responsibilities for managing others, ultimately as a department head. As a program director at MIT, John built a portfolio of ILP member companies, mostly in the pharmaceutical industry and headquartered in Japan, connecting them to engagement opportunities in the MIT community. Soon after returning to MIT, John began to lead a group of program directors with a combined portfolio of 60-80 global companies. In his current role, John oversees MIT Corporate Relations which houses ILP and MIT Startup Exchange.

J.J. Laukaitis
Program Director, MIT Corporate Relations

J.J. Laukaitis joined the Industrial Liaison Program in 2012 and is a strong believer in the amplifying power that comes from building enduring relationships between industry leaders and MIT researchers and innovators.

J.J. has over 25 years of experience in engineering, product management and commercial sales management across multiple industries including mechanical design and manufacturing, electronics, semiconductor equipment, health care IT and renewable energy.

In his work for PTC, Continuum, Teradyne, DFT Microsystems and GE, J.J. has managed programs to conceive, design and launch new products and services and has led major initiatives to transform customer information into insight for revenue growth.

Ron Spangler
Program Director, MIT Corporate Relations

Ron Spangler joined the Office of Corporate Relations (OCR) in October 2013 as Senior Industrial Liaison Officer.

Spangler comes to OCR with many years of experience in business development, portfolio management, product development, and strategy. For the past thirteen years, he has been at TIAX as Director, Government Business Development where he has been responsible for new technology-based business development, with emphasis on products and services in energy and defense. Prior to that, he was at Milde Technology Corporation, an MIT spinoff, as Vice President, Marketing and Business Development. Spangler has also held positions
8:55 AM
Fireside Chat: Perspectives on Investing and Nurturing Tough Tech Enterprises

Milo Werner
General Partner
The Engine

J.J. Laukaitis
Program Director, MIT Corporate Relations

J.J. Laukaitis joined the Industrial Liaison Program in 2012 and is a strong believer in the amplifying power that comes from building enduring relationships between industry leaders and MIT researchers and innovators.

J.J. has over 25 years of experience in engineering, product management and commercial sales management across multiple industries including mechanical design and manufacturing, electronics, semiconductor equipment, health care IT and renewable energy.

In his work for PTC, Continuum, Teradyne, DFT Microsystems and GE, J.J. has managed programs to conceive, design and launch new products and services and has led major initiatives to transform customer information into insight for revenue growth.

9:25 AM
Sustainability Resources and Opportunities at MIT; Overviews of Leading Programs and Centers

- MIT Climate and Sustainability Consortium
- MIT Environmental Solutions Initiative
- MIT Laboratory for Aviation and the Environment
- MIT Abdul Latif Jameel Water & Food Systems Lab

9:45 AM
Disruptive Developments in CO2 Capture, Water Recovery and Consumer Packaging
Kripa Varanasi
Professor of Mechanical Engineering

Kripa Varanasi is a Professor of Mechanical Engineering at MIT. He received his B.Tech from IIT Madras, India and his SM (ME and EECS) and Ph.D from MIT. Prior to joining MIT as a faculty member, Prof. Varanasi was a lead researcher and project leader at the GE Global Research Center. At GE he received many awards for his work including Best Patent, Best Technology Project and Leadership Award. At MIT, the focus of his work is in understanding the physico-chemical phenomena at interfaces and developing novel materials, devices, and products that can dramatically enhance performance in energy, water, agriculture, transportation, medical, and consumer devices. He is passionate about entrepreneurship and translating technologies from lab to market. He has co-founded multiple companies including LiquiGlide, Infinite Cooling, AgZen, and Everon24. Time and Forbes Magazines have named LiquiGlide to their “Best Inventions of the Year”. His Infinite Cooling project has won first prize at DOE’s National Cleantech University Prize, MIT 100K, Harvard Business School Energy & Environment Start-up, and MassChallenge. Prof. Varanasi has received numerous awards for his work NSF Career Award, DARPA Young Faculty Award, SME Outstanding Young Manufacturing Engineer Award, ASME Bergles-Rohsenow Heat Transfer Award, Boston Business Journal’s 40 under 40. ASME Gustus L. Larson Memorial Award for outstanding achievements in mechanical engineering, APS Milton van Dyke award, and MIT Graduate Student Council’s Frank E. Perkins Award for Excellence in Graduate Advising.

View full bio

10:15 AM
Networking Break
10:40 AM
CREWSnet: Cutting-edge Forecasting Technology that Boosts Climate Resilience
John C. Aldridge
Assistant Leader, Humanitarian Assistance and Disaster Relief Systems Group
MIT Lincoln Laboratory

11:10 AM
Decarbonizing Metallurgical Processes
Antoine Allanore
Associate Professor of Metallurgy, MIT Department of Materials Science and Engineering

Antoine Allanore has more than a decade of experience in the field of chemical metallurgy. Since 2004, as R&D engineer at ArcelorMittal in France, then at MIT since 2010, he has developed several alternative processes for metal extraction that adopt green chemistry principles. He co-founded Boston Electrometallurgical Corporation (BEMC) to engineer the large-scale development of such approaches. In 2012, he was appointed the T.B. King Assistant Professor of Metallurgy in the Department of Materials Science & Engineering at MIT, where his research group aims at developing sustainable materials extraction and manufacturing processes. His group has proposed a novel approach to investigate and control water/mineral interactions in soils using microfluidics (Word Congress on Soils Science, Korea, 2014, PLOSOne, 2015). Focusing on mining and processing of unconventional resources (Journal of the Total Environment, 2015, Green Chemistry 2015), he invented a waste-free process to produce a potassium fertilizer from earth-abundant raw materials. The product has been designed to suit tropical soils and has succeeded crop-tests. It is now under field evaluation in Brazil (16th World Fertilizer Congress, Rio, 2014). He teaches thermodynamics and sustainable chemical metallurgy at both the undergraduate and graduate level. He was awarded the DeNora Prize in 2012 and the Early Career Faculty Fellow award in 2015, both from TMS (The Minerals, Metals & Materials Society).

View full bio
Ariadna Rodenstein joined MIT Startup Exchange in a new role as Events Leader in September 2019. She has responsibility for the design and execution of startup events, including content development, coaching and hosting, and logistics. Ariadna works closely with the Industrial Liaison Program (ILP) in promoting collaboration and partnerships between MIT-connected startups and industry and other areas in the MIT innovation ecosystem and beyond. Prior to this, she worked for over a decade at Credit Suisse Group in New York and London, in a few different roles in event management and as Director of client strategy. Ariadna has combined her experience in the private sector with work at non-profits as a Consultant and Development Director at New York Immigration Coalition, Immigrant Defense Project, and Americas Society/Council of the Americas. She also served as an Officer on the Board of Directors of the Riverside Clay Tennis Association in New York for several years. Ariadna earned her B.A. in Political Science and Communications from New York University, with coursework at the Instituto Tecnológico y de Estudios Superiores de Monterrey in Mexico City, and her M.A. in Sociology from the City University of New York.

Dr. Leonardo Bonanni is the founder and CEO of Sourcemap, the supply chain transparency platform. Leading brands and manufacturers use Sourcemap software to trace their products to the source and ensure that corporate standards are met every step of the way, including zero-deforestation, zero-child labor, and the highest standards for raw materials such as recycled, fair trade and organic. You can see Timberland and The North Face, Mars and Hershey, all publishing their Sourcemap-verified supply chains on open.sourcemap.com, the world's largest supply chain disclosure website. Leo developed Sourcemap as part of his PhD at the MIT Media Lab and has been named among America's 100 Most Influential People in Business Ethics and America's Most Promising Social Entrepreneurs.

Yuval Pearl
Head, Environmental Policy
Metha.ai

Dan Nguyen
Strategic Partnerships Manager for Stationary Power
Amogy

Stephen Conant
Vice President for Commercial
VEIR
Panel: The Challenges and Opportunities of Advancing Sustainable Technologies in Industry

Jason Jay
Senior Lecturer, Sustainability
Director, Sustainability Initiative, Sloan School of Management

Jason Jay is a Senior Lecturer at the MIT Sloan School of Management and Director of the Sustainability Initiative at MIT Sloan.

He teaches courses on leadership, strategy, and innovation for sustainable business. Jason engages students and alumni in hands-on projects with leading companies and organizations. These efforts help build a community of innovators for sustainability that includes MIT students and alumni, faculty and researchers, with partners in business, government, NGOs, and hybrid organizations.

Jason’s research focuses on how people navigate the tensions inherent in the quest for sustainability, as they simultaneously pursue their own self-interest and the flourishing of human and other life. This work includes deep case studies of cross-sectoral collaboration and hybrid organizations that combine social and business goals. These case studies have been published in the Academy of Management Journal and California Management Review. He also contributes to the MIT Sloan Management Review, Stanford Social Innovation Review, and Greenbiz on the topic of sustainability-oriented innovation (SOI). A key finding of his research is that social innovation occurs through authentic conversations that hold the tension between divergent values and perspectives. With Gabriel Grant, he is the author of Breaking Through Gridlock: The Power of Conversation in a Polarized World.

As a facilitator and consultant, Jason has helped advance sustainability strategy with companies like Biogen, Novartis, and Bose. He is a research partner and facilitator for the EDF Climate Corps and its network of companies. He has contributed to the strategy and curriculum of the Harvard Kennedy School’s Social Innovation and Change Initiative as a faculty affiliate.

Prior to MIT, Jay ran an internet startup, traveled around the world, taught kindergarten in a progressive preschool, and worked as a consultant with Dialogos International, where he consulted on leadership development and organizational change for major international corporations and NGO’s including BP and the World Bank.

Jay holds an AB in psychology and a Master’s in education from Harvard University, and a PhD in Organization Studies from the MIT Sloan School of Management.

View full bio

Wei Cai
Chief Technology Officer
Technip Energies

Jerry Gupta
P&C Research Lead
Swiss Re Institute

Mike Witt
Vice President and Chief Sustainability Officer
Northrop Grumman
Richard Lester is the Japan Steel Industry Professor and Associate Provost at the Massachusetts Institute of Technology, where he oversees the international activities of the Institute. From 2009 to 2015 he served as head of MIT’s Department of Nuclear Science and Engineering, leading the Department successfully through a period of rapid rebuilding and strategic renewal.

Professor Lester’s research is concerned with innovation strategy and management, with a frequent focus on the energy and manufacturing sectors. He is widely known for his work on local, regional, and national systems of innovation, and he has led major studies of national and regional competitiveness and innovation performance commissioned by governments and industry groups around the world. He is the founding director and faculty chair of the MIT Industrial Performance Center.

Professor Lester is also well known for his teaching and research on nuclear technology innovation, management and control. He has been a long-time advocate of advanced nuclear reactor and fuel cycle technologies to improve the safety and economic performance of nuclear power, and his studies in the field of nuclear waste management helped provide the foundation for new institutional and technological strategies to deal with this longstanding problem.

Professor Lester’s latest book, Unlocking Energy Innovation: How America Can Build a Low-Cost, Low-Carbon Energy System (written with David Hart), outlines a strategy for mobilizing America’s innovation resources in support of a decades-long transition to an affordable and reliable low-carbon global energy system. Professor Lester is also the author or co-author of seven other books, including: The Productive Edge: A New Strategy for Economic Growth; Innovation—The Missing Dimension (with Michael Piore); Making Technology Work: Applications in Energy and the Environment (with John Deutch); Made in America: Regaining the Productive Edge (with Michael Dertouzos and Robert Solow); and Radioactive Waste: Management and Regulation (with Mason Willrich.)

Professor Lester obtained his undergraduate degree in chemical engineering from Imperial College and earned his Ph.D. in nuclear engineering from MIT. He has been a member of the MIT faculty since 1979. He is an advisor to governments, corporations, foundations and non-profit groups, and he serves as chair of the National Academies’ Board on Science, Technology, and Economic Policy.
Jeffrey C. Grossman is the Department Head of Materials Science and Engineering at the Massachusetts Institute of Technology and the Morton and Claire Goulder and Family Professor in Environmental Systems. He received his PhD in theoretical physics from the University of Illinois and performed postdoctoral work at the University of California at Berkeley. In 2009 he joined MIT, where he has developed a research program known for its contributions to energy conversion, energy storage, membranes, and clean-water technologies. He has published more than 200 scientific papers, holds 17 current or pending U.S. patents, and recently co-founded two companies to commercialize novel membranes materials for efficient industrial separations.
Noelle Eckley Selin is a Professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences. Her research uses atmospheric chemistry modeling to inform decision-making on air pollution, climate change and hazardous substances such as mercury and persistent organic pollutants (POPs). Professor Selin received her PhD from Harvard University in Earth and Planetary Sciences as part of the Atmospheric Chemistry Modeling Group, where she developed and evaluated a global, 3D model of mercury pollution. Prior to joining the MIT faculty, she was a research scientist with the MIT Joint Program on the Science and Policy of Global Change. In addition to her scientific work, she has published articles and book chapters on the interactions between science and policy in international environmental negotiations, in particular focusing on global efforts to regulate hazardous substances. Professor Selin is also affiliated with the MIT Joint Program on the Science and Policy of Global Change and the MIT Center for Environmental Health Sciences, and she also serves as the Director of MIT's Technology and Policy Program.

Climate and sustainability challenges are reshaping our world, but we lack sufficiently accurate and useful models to inform decision-making that capture these issues in their full complexity. Noelle Eckley Selin will present research efforts, including her recently-launched MIT Climate Grand Challenge project, which aims to provide accurate and actionable scientific information to decision-makers to inform the most effective mitigation and adaptation strategies. One component of this Grand Challenge project is the development of a novel platform that leapfrogs existing climate decision support tools by leveraging advances in computational and data sciences to improve the accuracy of climate models, quantify their uncertainty, and addresses the trade-off between performance and computation time with attention to industry and government stakeholder needs. Another aspect will be associated “emulators” — fast-running, efficient models that are more usable by stakeholders, but that maintain the highest possible accuracy in predicting specific variables relevant to sustainability. Professor Selin will give specific examples drawn from the area of health impacts of air quality.
Engineering Nitrogen Delivery to Cereals
Christopher Voigt
Daniel I.C. Wang Professor of Advanced Biotechnology
MIT Department of Biological Engineering

Christopher Voigt is the Daniel I.C. Wang Professor of Advanced Biotechnology in the Biological Engineering Department at the Massachusetts Institute of Technology. Dr. Voigt is an expert in Synthetic Biology and has led research programs across medicine, agriculture, chemistry/materials and defense. He is the co-Director of the Center for Synthetic Biology and the Editor-and-Chief of ACS Synthetic Biology. He is a Founder of Pivot Bio and Asimov IO and has served on the SABs of DSM, Synlogic, Amyris, Bolt Threads, Zymergen, Design Therapeutics, Arcella, Aanika, Senti, DeepBiome, Empress Biotechnologies, and Twist Bioscience. He is an Vannevar Bush Faculty Fellow (VBFF) for the Office of the Secretary of Defense (OSD), a member of the Bush Fellows Research Study Team (BFRST) and a Newton Award Recipient. He was a founding member of the Engineering Biology Research Consortium (EBRC) (formally SynBERC). He is a founder of the Synthetic Biology, Evolution, Engineering and Design (SEED) conference series.

View full bio

Nitrogenous fertilizer is critical to obtain high crop yields, but its production and use consumes 3% of the global energy supply and 2-6% of greenhouse gases, including potent N₂O. Biological nitrogen fixation offers an alternative, but the nitrogenase is a complex enzyme that requires dozens of genes and tight regulation to function and symbiotic relationships with crops are difficult to control. Here, I will present several approaches we are taking to engineer corn or corn-associated microbes to fix their own nitrogen. First, I will discuss approaches to engineer bacteria that associate with maize roots to break and replace their regulatory pathways so that they turn on nitrogen fixation even in the presence of applied nitrogen fertilizer. Second, I will describe efforts to engineer plants themselves to carry the microbial pathways. Collectively, approaches from Synthetic Biology are facilitating new approaches to this long-standing problem to produce self-fertilizing crop systems.
Julie Newman, Ph.D. joined the Massachusetts Institute of Technology in 2013 as the first Director of Sustainability for the institute, where she was charged with launching the Office of Sustainability. She also holds a lecturer appointment with the Department of Urban Studies and Planning and co-teaches a course entitled “Solving for Carbon Neutrality at MIT.” In 2004, Julie founded the Office of Sustainability at Yale University, where she held a lecturer appointment with the Yale School of Forestry and Environmental Studies. Prior to that, she assisted with the launch of the University of New Hampshire Sustainability Institute in 1997. In 2004, Julie founded the Northeast Campus Sustainability Consortium, the longest-standing active network of university sustainability professionals in the United States, to advance education and action for sustainable development on university campuses in the northeast and maritime region.

Julie lectures and consults for universities both nationally and internationally and has contributed to a series of edited books and peer-reviewed journals. Julie holds a BS in Natural Resource Policy and Management from the University of Michigan, an MS in Environmental Policy and Biology from Tufts University, and a Ph.D. in Natural Resources and Environmental Studies from the University of New Hampshire.

MIT’s commitment to climate and sustainability is grounded in leveraging the campus as a test bed. This methodology, as applied by the Office of Sustainability with campus partners, leads to an evaluation and research process that seeks to inform and reimagine campus systems to advance a comprehensive commitment to sustainability and climate solution development. At MIT, this approach manifests in the form of courses, class projects, lab research, data collection, and applied research. Ultimately, we seek to transform MIT into a model organization that generates and demonstrates new and proven ways to respond to the challenge of our changing planet.

Day 2: September 21 (Wednesday) Sustainability Workshops

Sustainability Workshops

Sustainability is fast becoming an imperative across numerous industrial domains. The companies that get ahead of the curve will both do good and do well in the coming sustainable economy.

Building on the lessons learned from Day 1 of the 2022 MIT Sustainability Conference, these focused, structured, topical workshops will give you the opportunity to interact with MIT and your peers in the Industrial Liaison Program, to define common challenges in industrial sustainability, and to understand how your engagement with MIT can help shape your company’s responses. There will be homework!

We have arranged these workshops in two sessions, to allow you to engage on more than one topic:

8:30 AM - 9:00 AM Registration with Light Breakfast
Session 1: Designing Plastics for End-of-Life to Enable Circularity

Desirée Plata
Winslow Career Development Professor, Civil Engineering
Assistant Professor, Civil and Environmental Engineering

Desirée Plata holds a Ph.D. in Environmental Chemistry and Chemical Oceanography from MIT and the Woods Hole Oceanographic Institution. She has a B.S. in Chemistry from Union College and proudly attended Gould Academy for high school.

View full bio

Dr. Thomas Holcombe
Head of BASF's Northeast Research Alliance

Dr. Yelena Kann
Founder and CEO of Radical Plastics Inc.

Vance Merolla
Worldwide Director, Global Sustainability, Colgate-Palmolive

Elsa Olivetti
Edgerton Associate Professor, MIT DMSE

Elsa Olivetti is the Esther and Harold E. Edgerton Career Development Professor in the Department of Materials Science and Engineering (DMSE) at the Massachusetts Institute of Technology. Her research focuses on improving the environmental and economic sustainability of materials in the context of rapid-expanding global demand. Dr. Olivetti received her B.S. degree in Engineering Science from the University of Virginia and her Ph.D. in Materials Science Engineering from MIT.

View full bio

Bradley Olsen
Alexander and I. Michael Kasser (1960) Professor, Graduate Admissions Co-Chair, MIT Department of Chemistry

Bradley Olsen
Alexander and I. Michael Kasser (1960) Professor, Graduate Admissions Co-Chair

Professor Olsen earned his S.B. in Course 10 (Chemical Engineering) from MIT in June 2003. His undergraduate research with Prof. Karen Gleason focused on understanding the polymerization kinetics of initiated chemical vapor deposition reactions to produce fluorocarbon and organosiloxane polymer coatings for biopassivation and hydrophobic surfaces. He also performed research in analytical food chemistry at General Mills, pressure sensitive adhesives for waterproofing membranes at W.R. Grace, and reactive extrusion and
Aviation is considered a tough-to-decarbonize mode of transportation because volume and weight challenges render many decarbonization pathways infeasible (e.g. large battery-electric airliners). In fact, it is likely that aviation’s value chain will have to be re-designed to meet ambitious environmental goals. This has economy-wide implications: not only will the world need new aircraft, but operational patterns will have to be adjusted, and infrastructure as well as a supporting energy system will have to be built. As such, this decarbonization challenge provides a prime example for tackling complex decarbonization challenges which are interlinked with the future shape of our global economy.

This workshop takes a holistic approach towards the problem. It brings together academics and industry to identify guiding sustainability metrics and gain insights into approaches for achieving system-level change.

Moderated discussion for this workshop will explore:

- What are the goals and guiding metrics for key players of the aviation value chain?
- Which coordinated activities by value chain partners are needed to meet ambitious sustainability goals?
- Which technological breakthroughs will enable the path towards a sustainable aviation sector?
Corporate commitments to net zero greenhouse gas (GHG) emission targets have increased dramatically in recent years. This has primarily been motivated by corporate social responsibility factors, but regulatory pressure is mounting. The process for setting these targets generally involves three steps: measuring corporate GHG emissions, setting targets, and developing pathways to achieve the targets. There is significant variation across these targets on the scope of operations included (scope 1, scope 2, and scope 3) and the timing.

This workshop will explore the process of setting and adopting net zero greenhouse gas targets. This includes the technical aspects of measuring GHG emissions and evaluating the potential for pathways to achieve targets, as well as the organizational aspects associated with setting targets, obtaining resources for achieving them, and adjusting implementation based on organizational and societal factors.

Moderated discussion for this workshop will explore:

- What are the most significant challenges associated with setting and adopting net zero greenhouse gas targets?
- What organizational practices will help address these challenges?
- What regulatory pressure is expected in the coming years and how will that affect GHG measurement and reporting?
Session 2: Managing Industrial Wastewater Through Research and Innovation

John Lienhard
Professor and Founding Director
Abdul Latif Jameel Water & Food Systems Lab (J-WAFS)

Longzhen (Longy) Han
Director of External Relations
Abdul Latif Jameel Water and Food Systems Lab

Dan Perlman
Professor of Biology and Environmental Studies & Chair of Environmental Studies
Brandeis University

Timothy M Swager
John D. MacArthur Professor
MIT Department of Chemistry

Zachary P Smith
Robert N. Noyce Career Development Professor
Department of Chemical Engineering

Shuwen Yue
Postdoctoral Associate
MIT Department of Chemical Engineering

Lenan Zhang
Graduate Student at Device Research Lab (DRL)
Department of Mechanical Engineering

Rohit N Karnik
Professor of Mechanical Engineering; Associate Department Head for Education; Tata Professor
MIT Department of Mechanical Engineering

MIT Abdul Latif Jameel Water and Food Systems Laboratory

In this workshop, you will have the opportunity to discuss your companies’ hard-to-solve industrial water-related challenges. You will hear directly from professors across MIT to learn about the latest research and inventions in this space. We will also help you explore the topic of industrial process water in an unpressured, creative way that can catalyze meaningful, actionable research projects.

Stay after our session to meet J-WAFS professors from across MIT over a networking lunch.

MIT J-WAFS is an Institute-wide, cross-disciplinary research program with international reach. J-WAFS mobilizes MIT resources to bring scientific, technical, and business solutions to urgent global water and food challenges across the world.

* You are encouraged to share a few thoughts on your specific water challenges prior to the workshop via email to lhan@mit.edu

12:30 PM - 1:00 PM Adjournment with Bagged Lunch