Co-adaptive Human Machine Teaming with a Reinforcement Learning Agent

Reed Jensen, Technical Staff

MIT ILP Conference

14 November 2019
Human Collaboration with Technology

Safety

- Number of crash incidents increased when pilot and co-pilot flew together for the first time
- Due to a lack of mutual understanding / co-adaptation

Efficiency and Adoption

- Scrub nurses learn over years to anticipate surgeons’ needs
- Robots require surgeon to select tools using gestures or voice commands
- This manual tasking slows down surgery, negating adoption, and potentially endangering patient

Systems (human or automated) that do not understand their human collaborator suffer from decreased safety, efficiency, and rates of adoption
Collaboration Example: Search and Rescue

- Humans team with autonomous vehicles to manage multiple roles and missions in complex environments
- Imagine introducing a swarm of smart UAVs to assist
 - Will the technology be used?
 - Will it be used effectively?
 - Is the human-AI system robust?

Need to evaluate adoption and performance of human collaborators with new technology
Elements for Robust Human-AI Collaboration

- Flexible, human-aware AI
- Natural interface between human and machine
- Low barrier of entry for human involvement
- Iterative feedback process that incorporates behavior and performance

For robust human-AI teams, need AI technologies that can co-adapt
Outline

• Motivation

• Development of Co-adaptive AI
 – Optimization under Uncertainty
 – Personalization

• Human-machine Teaming Study

• Summary
Optimization under Real-world Conditions

Optimization Challenges

- Environment Uncertainty
- Outcome Uncertainty
- Communication Limitations
- Adversarial Behavior
- High-dimensional Domain

Going Beyond Traditional Games

“Go” → **“Partially Observable Go”**

Examples of Complex Real-world Problems

- Search and Rescue
- Hazardous Area Assessment
- Dynamic Path Planning

Optimization algorithms must deal with the *fog, friction, and chance* of real-world scenarios.
Reinforcement Learning for Autonomous Agents
Decentralized Multi-Agent Coordination with the G-DICE Algorithm

- Joint playbook optimized using the Graph-based Directed Cross Entropy (G-DICE) algorithm
 - General-purpose algorithm
 - Solves a Partially Observable Markov Decision Process (POMDP) with decentralized agents
 - Easily parallelized on a computing cluster

- Playbooks / policies executed as finite state machines in real-time
 - Require minimal computation
 - Adapt to changes and uncertainty in the environment
 - Work with or without communication

Approach can be applied to many challenging multi-agent coordination problems

Autonomous agent performance in game compares with that of high-performing humans.
Outline

• Motivation
• Development of Co-adaptive AI
 – Optimization under Uncertainty
 – Personalization
• Human-machine Teaming Study
• Summary
Apprentice AI predicts future user actions by forming a decision tree using pointwise comparisons between actions taken and not.
• Learn a personalized model using demonstrations from a heterogeneous population
 – Actions, observations, features are determined from gameplay
 – Personalized model leverages data from all users
 – Individual customization can be learned online

• World / transition model learned from gameplay

• Model variables represent individual qualities and can be interpreted from a decision tree

Personalization with Apprenticeship Learning

Personalization with Heterogeneous Demonstrators

Data Inefficient / Overfitted

Generalized / Data Efficient

Personalized Neural Networks and Decision Trees

Multi-layer Long Short-Term Memory Network with Personalized Embeddings

Conversion of Neural Network to Differentiable Decision Tree for Interpretability

Collaborative Optimization Via Apprenticeship Scheduling (COVAS)

• Traditional optimization approaches rely on “warm starts,” which provide an initial guess lower bound on the optimality

• COVAS is a human-machine optimization technique that learns from human demonstrations how to warm start

COVAS Architecture

Model-based solver uses a constraint checker to ensure soundness of initial solution

Classical mathematical programming approach to optimization

COVAS can solve problems with more tasks an order of magnitude faster than pure optimization

Outline

• Motivation

• Development of Co-adaptive AI
 – Optimization under Uncertainty
 – Personalization

• Human-machine Teaming Study

• Summary
Human-Machine Teaming with Autonomous Agents

Learn model of human team member

Optimize automated agent using apprentice as surrogate for human

AI complements human teammates playing scenario

Iteration with co-adaptive AI enables robust human-AI teaming
Human-Machine Teaming Study Overview

- **Hypothesis**
 - Human team with personalized, optimized autonomous helper agent will be preferred and most efficient

- **Scenario**
 - Human given a task in a virtual environment to rescue victims using rescue personnel and an unmanned air vehicle (UAV) decoy
 - Player must use both personnel and the UAV to obtain perfect score
 - UAV controlled by an automated algorithm trained under four conditions:
 - Manual (untrained): Human user controls personnel and UAV
 - Optimized Without User Input: UAV finds optimal stations ignoring user preferences
 - Preference-based: UAV finds stations based on user demonstrations
 - Preference-based and Optimized: UAV finds optimal stations given user demonstrations
• Participants play long enough to settle on a strategy but not enough to get perfect score

• UAV agent algorithm trained offline between Performance and Testing sessions

• Participants team with UAV agent but are not told algorithm objectives or training conditions
Example Human-Machine Teaming Results

Human Agnostic ("Idle")

Raw Playback

Raw Playback + Randomization

Human-Trained Apprentice

Players used fewer resources when teaming with AI trained with previous gameplay

Players indicated lower workload when using AI trained with previous gameplay

Number of Resources Used per Agent Type

Subjective Score for "The AI lowered my workload"

N = Approximately 25 participants

* Additional collections needed to increase statistical power
Next Steps

• Complete 2019 study analysis
 – Tested all four conditions, including apprentice with personalized embeddings
 – Over 40 participants

• Teach learning agents to co-adapt as human changes behavior
 – Agent learns changing objectives
 – Assess convergence or divergence of human and AI within game-theoretic framework

• Dynamically share roles and tasks over time
 – Human takes over or cedes tasks depending on cognitive load and performance
 – AI naturally adjusts
Summary

• Must consider the human element when designing AI solutions with human teammates

• Flexible AI solutions exist that can incorporate individual preferences and population behaviors in a natural way

• Preliminary experiment results suggest reinforcement learning algorithm with human demonstrations may increase efficiency and reduce workload

• Work to incorporate co-adaptation and task sharing ongoing
Acknowledgements

• Georgia Tech
 – Matthew C. Gombolay
 – Rohan Paleja

• MIT Campus
 – Jonathan P. How

• MIT LL
 – J. Daniel Griffith
 – Emily P. Anesta

• Northeastern University
 – Christopher Amato