Blind Machine Learning

Vinod Vaikuntanathan

MIT

Joint work with Chiraag Juvekar and Anantha Chandrakasan
Problem 1. Blind Inference
(application: Monetizing ML)

Secure Two-party Computation: “Alice should get (only) the inference result, and the startup should learn nothing”
Problem 2. Blind Training
(application: Collaborative ML)

<table>
<thead>
<tr>
<th>ID</th>
<th>Genome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Database could be horizontally or **vertically** partitioned

Secure Two-party Computation: “Parties should learn a classifier (genotype-phenotype correlations) but nothing else”
What does “blind” mean?

Defining Security: the Simulation Paradigm [GMR’85]

“What anything learnt on the left could’ve been learnt on the right”

Adversarial capability = honest-but-curious vs malicious
Conventional Wisdom (?)

EITHER: Large Communication Overhead or

Large Computational Overhead or

Only support simple models*

[Lindell-Pinkas’00, Lauter-Naehrig-V.’11, Wu-Haven’12, Graepel-Lauter-Naehrig’12, Nikolaenko-Weinsberg-Ioannidis-Joye-Boneh-Taft’13a,13b, Bost-Popa-Tu-Goldwasser’15 and many more]
Secure Computing Techniques I

From the 1980s

- Yao’s Garbled Circuits [1986]
 2 parties, lightweight crypto

 2 or more parties, lightweight crypto

- BenOr-Goldwasser-Wigderson (BGW) Protocol [1988]
 3 or more parties, < ½ corruption, no crypto
Secure Computing Techniques I

From the 1980s

PLUS. Efficient computationally.

MINUS. Inefficient Communication (\propto Boolean circuit size)

MINUS. Computational efficiency only for Boolean (vs. arithmetic) computations*
Secure Computing Techniques II

From this decade

Fully Homomorphic Encryption [Gen’09, BV’11, BGV’12, GSW’13]
Secure Computing Techniques II

From this decade

Fully Homomorphic Encryption [Gen’09, BV’11, BGV’12, GSW’13]

PLUS. Efficient Communication (∝ image size)

PLUS. Native Arithmetic (not just Boolean) Computations

MINUS. Inefficient Computation (∝ degree)
The Old vs The New: Which is Better?

How would you get from A to B? (assume unlimited supply of Ferraris and Camels)
When is FHE Better?
(than garbled circuits/GMW/BGW etc.)

WHEN:

1. Computation is linear (degree-1)
 \((FHE \text{ is fast})\)

and

2. Circuit-size is super-linear (say, quadratic)
 \((MPC \text{ costs in bandwidth})\)
Overview of Our Approach

Convolutional Neural Networks: Alternating Linear and Non-linear Layers

Linear Layer (FHE) → Non-Linear Layer (2PC) → ... → Linear Layer (FHE) → Non-Linear Layer (2PC)

Model Parameters

1000x lower BW
No Retraining
10-50x faster (SW)
Gazelle: Fast HE for CNNs

Fast Homomorphic Encryption Library with Native Support for Neural Network Layers

(Extending the PALISADE lattice library)
Basic HE Operations

Plaintexts: 8 bits.

Ciphertexts:
2048 Slots, each 64 Bits

Each Slot: Plaintext & “Noise”

Addition: Add an encrypted vector \(v \) to another encrypted vector \(v' \)

Scalar Multiplication: Mult encrypted \(v \) with plaintext \(v' \) (coordinate wise)

Rotation (Automorphism): Permute the slots (typically, rotate)
Gazelle: Fast HE for CNNs

Fast Homomorphic Encryption Library with Native Support for Neural Network Layers

(extend the PALISADE lattice library)

Homomorphic Addition*:
~ 6 μs or 18K clock cycles (for 2048 add)

Homomorphic Scalar Mult*:
~ 14 μs or 42K clock cycles (for 2048 mult)

Homomorphic Slot Rotation:
~ 300 μs or 900K clock cycles (non-amortized)

* single-threaded, no vectorization, 3GHz processor
* CT dimension: 2048, modulus: 64 bits, pt mod: 8 bits
Gazelle: Fast HE for CNNs

Fast Homomorphic Encryption Library with Native Support for Neural Network Layers

(extendng the PALISADE lattice library)

Our Work: Homomorphic Matrix-Vector Mult
- 64 X 2048 matrix of 8-bit numbers
- \(\sim 16 \text{ ms}, 47\text{M} \text{ clock cycles} \) (ptxt: \textit{at least} 128K)

Our Work: Homomorphic Convolutions

* single-threaded, no vectorization, 3GHz processor
* CT dimension: 2048, modulus: 64 bits, pt mod: 8 bits
Gazelle: Fast HE for CNNs

Fast Homomorphic Encryption Library with Native Support for Neural Network Layers

(Extending the PALISADE lattice library)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Network Details</th>
<th>Computation & Communication Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>2 conv, 2 FC, 32*32 input, 400K mult-add</td>
<td>100 ms comp. + 111 Mb comm. = 111ms*</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>7 conv, 1 FC, 32*32 input, 61M mult-add</td>
<td>1.6s comp., 2 Gb comm. = 2s*</td>
</tr>
<tr>
<td>ImageNet</td>
<td>5 conv, 3 FC, 256*256 input, 1.3G mult-add</td>
<td>20s comp., 20 Gb comm. = 20s*</td>
</tr>
</tbody>
</table>
1. Simple Mult: Each matrix row with the encrypted vector

- Lots of rotations \((N \log N)\)
- Reasonable noise growth \(\eta_0 X \eta_{mult} + \eta_{rot}\)

Evaluated ciphertexts are not packed
(one number per ciphertext)
2. Diagonal Multiplication:

IDEA: Non-interacting numbers go into same ciphertext

- Fewer rotations \((O(N) \text{ on the encrypted vector})\)
- Bigger noise growth \((\eta_0 + \eta_{\text{rot}}) \times \eta_{\text{mult}}\)
Fast Matrix Multiplications

3. Interpolating between 1 & 2 ("Baby Step Giant Step")

4. "Hoisting": optimized [Halevi-Shoup'17]

 “N input rotations (almost) for the price of one”
Ongoing & Future Work

◆ Programming Framework for Encrypted CNNs.
 Mostly handcoded + some automatic optimization
 Can we come up with the best homomorphic evaluation automatically?

◆ Beyond CNNs? Limits of encrypted computation

◆ Encrypted ML Training?
Thank you!